Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana

被引:197
|
作者
Brini, Faical
Hanin, Moez
Lumbreras, Victoria
Amara, Imen
Khoudi, Habib
Hassairi, Afif
Pages, Montserrat
Masmoudi, Khaled [1 ]
机构
[1] Ctr Biotechnol Sfax, Plant Mol Genet Unit, BPK, Sfax, Tunisia
[2] CSIC, Dept Mol Genet, ES-08034 Barcelona, Spain
关键词
Dhn-5; LEA proteins; salt and drought stress; plant recovery; osmotic adjustment;
D O I
10.1007/s00299-007-0412-x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Late Embryogenesis Abundant (LEA) proteins are associated with tolerance to water-related stress. A wheat (Triticum durum) group 2 LEA proteins, known also as dehydrin (DHN-5), has been previously shown to be induced by salt and abscisic acid (ABA). In this report, we analyze the effect of ectopic expression of Dhn-5 cDNA in Arabidopsis thaliana plants and their response to salt and osmotic stress. When compared to wild type plants, the Dhn-5 transgenic plants exhibited stronger growth under high concentrations of NaCl or under water deprivation, and showed a faster recovery from mannitol treatment. Leaf area and seed germination rate decreased much more in wild type than in transgenic plants subjected to salt stress. Moreover, the water potential was more negative in transgenic than in wild type plants. In addition, the transgenic plants have higher proline contents and lower water loss rate under water stress. Also, Na+ and K+ accumulate to higher contents in the leaves of the transgenic plants. Our data strongly support the hypothesis that Dhn-5, by its protective role, contributes to an improved tolerance to salt and drought stress through osmotic adjustment.
引用
收藏
页码:2017 / 2026
页数:10
相关论文
共 50 条
  • [41] Overexpression of NaKR3 enhances salt tolerance in Arabidopsis
    Luo, Q.
    Zhao, Z.
    Li, D. K.
    Zhang, Y.
    Xie, L. F.
    Peng, M. F.
    Yuan, S.
    Yang, Y.
    GENETICS AND MOLECULAR RESEARCH, 2016, 15 (01):
  • [42] Overexpression of β-carotene hydroxylase enhances stress tolerance in Arabidopsis
    P. A. Davison
    C. N. Hunter
    P. Horton
    Nature, 2002, 418 : 203 - 206
  • [43] The Opuntia streptacantha OpsHSP18 Gene Confers Salt and Osmotic Stress Tolerance in Arabidopsis thaliana
    Salas-Munoz, Silvia
    Gomez-Anduro, Gracia
    Delgado-Sanchez, Pablo
    Rodriguez-Kessler, Margarita
    Francisco Jimenez-Bremont, Juan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2012, 13 (08) : 10154 - 10175
  • [44] Overexpression of an SKn-dehydrin gene from Eucalyptus globulus and Eucalyptus nitens enhances tolerance to freezing stress in Arabidopsis
    Aguayo, Paula
    Sanhueza, Javiera
    Noriega, Felipe
    Ochoa, Margaret
    Lefeuvre, Regis
    Navarrete, Dario
    Fernandez, Marta
    Valenzuela, Sofia
    TREES-STRUCTURE AND FUNCTION, 2016, 30 (05): : 1785 - 1797
  • [45] Heterologous expression of bacterial dehydrin gene in Arabidopsis thaliana promotes abiotic stress tolerance
    Khan, Nadir Zaman
    Ali, Akhtar
    Ali, Waqar
    Aasim, Muhammad
    Khan, Tariq
    Khan, Zaryab
    Munir, Iqbal
    PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2023, 29 (09) : 1239 - 1246
  • [46] Heterologous expression of bacterial dehydrin gene in Arabidopsis thaliana promotes abiotic stress tolerance
    Nadir Zaman Khan
    Akhtar Ali
    Waqar Ali
    Muhammad Aasim
    Tariq Khan
    Zaryab Khan
    Iqbal Munir
    Physiology and Molecular Biology of Plants, 2023, 29 : 1239 - 1246
  • [47] Overexpression of Osmyb4 enhances compatible solute accumulation and increases stress tolerance of Arabidopsis thaliana
    Mattana, M
    Biazzi, E
    Consonni, R
    Locatelli, F
    Vannini, C
    Provera, S
    Coraggio, I
    PHYSIOLOGIA PLANTARUM, 2005, 125 (02) : 212 - 223
  • [48] Overexpression of the Panax ginseng MYB4 gene enhances stress tolerance in transgenic Arabidopsis thaliana
    Lian, W. H.
    Sun, T. X.
    Meng, X. Y.
    Sun, R.
    Hui, F.
    Jiang, Y. N.
    Zhao, Y.
    BIOLOGIA PLANTARUM, 2021, 65 : 27 - 38
  • [49] Overexpression of the wheat trehalose 6-phosphate synthase 11 gene enhances cold tolerance in Arabidopsis thaliana
    Liu, Xin
    Fu, Lianshuang
    Qin, Peng
    Sun, Yinglu
    Liu, Jun
    Wang, Xiaonan
    GENE, 2019, 710 : 210 - 217
  • [50] Constitutive expression of the wheat TaSOD5 gene enhances salinity tolerance of Arabidopsis thaliana
    Song, Y. -G.
    Gao, T. -X.
    Liu, X. -J.
    Dong, W.
    BIOLOGIA PLANTARUM, 2019, 63 : 750 - 756