Assessment of the thermal stability of anodic alumina membranes at high temperatures

被引:46
|
作者
Fernandez-Romero, L. [1 ]
Montero-Moreno, J. M. [2 ]
Pellicer, E. [1 ]
Peiro, F. [1 ]
Cornet, A. [1 ]
Morante, J. R. [1 ]
Sarret, M. [2 ]
Muller, C. [2 ]
机构
[1] Univ Barcelona, Fac Fis, Dept Elect, EME CEMIC CeRMAE, E-08028 Barcelona, Spain
[2] Univ Barcelona, Fac Quim, Dept Quim Fis, Lab Electrodeposicio & Corrosio Electrodep, E-08028 Barcelona, Spain
关键词
aluminium oxide; AA1050; electrochemical techniques; annealing; X-ray diffraction;
D O I
10.1016/j.matchemphys.2008.05.003
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The thermal stability of anodic alumina membranes (AAMs) annealed in air from 750 degrees C up to 1100 degrees C was investigated. AAMs were produced by single-step anodising of laminated AA1050 in 0.30M oxalic acid medium. The barrier layer provided thermal stability to the membranes, since it avoided or minimized bending and cracking phenomena. X-ray diffraction (XRD) analyses revealed that as-synthesized AAMs were amorphous and converted to polycrystalline after heat-treating above 750 degrees C. However, porous and barrier layers did not re-crystallize in the same way. The porous layer mainly crystallized in the gamma-Al2O3 phase within the range of 900-1100 degrees C, while the barrier layer was converted to the alpha-Al2O3 phase at 1100 degrees C. Different grain sizes were also estimated from Scherrer's formula. Scanning electron microscopy (SEM) images pointed out that cell wall dilation of the porous layer explained membrane cracking, which was avoided in presence of the barrier layer. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:542 / 547
页数:6
相关论文
共 50 条
  • [21] A facile approach to the formation of the alumina nanostructures from anodic alumina membranes
    Xu, Xi Jin
    Fei, Guang Tao
    Zhu, Li Qiang
    Wang, Xue Wei
    MATERIALS LETTERS, 2006, 60 (19) : 2331 - 2334
  • [22] Preparation of γ-Alumina Membranes From Sulphuric Electrolyte Anodic Alumina and Its Transition to α-Alumina
    R. Ozao
    M. Ochiai
    H. Yoshida
    Y. Ichimura
    T. Inada
    Journal of Thermal Analysis and Calorimetry, 2001, 64 : 923 - 932
  • [23] Preparation of γ-alumina membranes from sulphuric electrolyte anodic alumina and its transition to α-alumina
    Ozao, R
    Ochiai, M
    Yoshida, H
    Ichimura, Y
    Inada, T
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2001, 64 (03): : 923 - 932
  • [24] Thermal and hydrothermal stability of a metal monolithic anodic alumina support for steam reforming of methane
    Guo, Yu
    Zhou, Lu
    Kameyama, Hideo
    CHEMICAL ENGINEERING JOURNAL, 2011, 168 (01) : 341 - 350
  • [25] THERMAL STABILITY OF ELASTOMERIC NETWORKS AT HIGH TEMPERATURES
    LEE, TCP
    SPERLING, LH
    TOBOLSKY.AV
    JOURNAL OF APPLIED POLYMER SCIENCE, 1966, 10 (12) : 1831 - &
  • [26] Fabrication and high-temperature structural characterization study of porous anodic alumina membranes
    K. S. Choudhari
    P. Sudheendra
    N. K. Udayashankar
    Journal of Porous Materials, 2012, 19 : 1053 - 1062
  • [27] Fabrication and high-temperature structural characterization study of porous anodic alumina membranes
    Choudhari, K. S.
    Sudheendra, P.
    Udayashankar, N. K.
    JOURNAL OF POROUS MATERIALS, 2012, 19 (06) : 1053 - 1062
  • [28] Nanostructures fabrication by template deposition into anodic alumina membranes
    Inguanta, R.
    Ferrara, G.
    Piazza, S.
    Sunseri, C.
    ICHEAP-9: 9TH INTERNATIONAL CONFERENCE ON CHEMICAL AND PROCESS ENGINEERING, PTS 1-3, 2009, 17 : 957 - 962
  • [29] Porosity of anodic alumina membranes from electrochemical measurements
    Sunseri, C
    Spadaro, C
    Piazza, S
    Volpe, M
    Quarto, F
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2006, 10 (06) : 416 - 421
  • [30] Photoluminescence of anodic alumina membranes: pore size dependence
    Li, GH
    Zhang, Y
    Wu, YC
    Zhang, LD
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2005, 81 (03): : 627 - 629