Assessment of the thermal stability of anodic alumina membranes at high temperatures

被引:46
|
作者
Fernandez-Romero, L. [1 ]
Montero-Moreno, J. M. [2 ]
Pellicer, E. [1 ]
Peiro, F. [1 ]
Cornet, A. [1 ]
Morante, J. R. [1 ]
Sarret, M. [2 ]
Muller, C. [2 ]
机构
[1] Univ Barcelona, Fac Fis, Dept Elect, EME CEMIC CeRMAE, E-08028 Barcelona, Spain
[2] Univ Barcelona, Fac Quim, Dept Quim Fis, Lab Electrodeposicio & Corrosio Electrodep, E-08028 Barcelona, Spain
关键词
aluminium oxide; AA1050; electrochemical techniques; annealing; X-ray diffraction;
D O I
10.1016/j.matchemphys.2008.05.003
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The thermal stability of anodic alumina membranes (AAMs) annealed in air from 750 degrees C up to 1100 degrees C was investigated. AAMs were produced by single-step anodising of laminated AA1050 in 0.30M oxalic acid medium. The barrier layer provided thermal stability to the membranes, since it avoided or minimized bending and cracking phenomena. X-ray diffraction (XRD) analyses revealed that as-synthesized AAMs were amorphous and converted to polycrystalline after heat-treating above 750 degrees C. However, porous and barrier layers did not re-crystallize in the same way. The porous layer mainly crystallized in the gamma-Al2O3 phase within the range of 900-1100 degrees C, while the barrier layer was converted to the alpha-Al2O3 phase at 1100 degrees C. Different grain sizes were also estimated from Scherrer's formula. Scanning electron microscopy (SEM) images pointed out that cell wall dilation of the porous layer explained membrane cracking, which was avoided in presence of the barrier layer. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:542 / 547
页数:6
相关论文
共 50 条
  • [1] The thermal stability of anodic alumina membranes at high temperatures
    Wang, Danli
    Ruan, Yongfeng
    Zhang, Lingcui
    Zhu, Wei
    Wang, Pengfei
    CRYSTAL RESEARCH AND TECHNOLOGY, 2013, 48 (06) : 348 - 354
  • [2] THERMAL PROPERTIES OF ANODIC ALUMINA MEMBRANES
    Roslyakov, I. V.
    Napolskii, K. S.
    Evdokimov, P. V.
    Napolskiy, F. S.
    Dunaev, A. V.
    Eliseev, A. A.
    Lukashin, A. V.
    Tretyakov, Yu. D.
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2013, 4 (01): : 120 - 129
  • [3] Liquid permeation and chemical stability of anodic alumina membranes
    Petukhov, Dmitrii I.
    Buldakov, Dmitrii A.
    Tishkin, Alexey A.
    Lukashin, Alexey V.
    Eliseev, Andrei A.
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2017, 8 : 561 - 570
  • [4] Thermal radiation shielding by nanoporous membranes based on anodic alumina
    Muratova, E. N.
    Matyushkin, L. B.
    Moshnikov, V. A.
    Chernyakova, K. V.
    Vrublevsky, I. A.
    24TH INTERNATIONAL CONFERENCE ON VACUUM TECHNIQUE AND TECHNOLOGY, 2017, 872
  • [5] NEW AND MODIFIED ANODIC ALUMINA MEMBRANES .1. THERMOTREATMENT OF ANODIC ALUMINA MEMBRANES
    MARDILOVICH, PP
    GOVYADINOV, AN
    MUKHUROV, NI
    RZHEVSKII, AM
    PATERSON, R
    JOURNAL OF MEMBRANE SCIENCE, 1995, 98 (1-2) : 131 - 142
  • [6] New and modified anodic alumina membranes part I. Thermotreatment of anodic alumina membranes
    Mardilovich, P.P.
    Govyadinov, A.N.
    Mukhurov, N.I.
    Rzhevskii, A.M.
    Paterson, R.
    Journal of Membrane Science, 1995, 98 (1-2):
  • [7] Electrochemical Detection of Barrier Layer Removal for Preparation of Anodic Alumina Membranes with High Permeance and Mechanical Stability
    Pyatkov E.S.
    Berekchiyan M.V.
    Yeliseyev A.A.
    Lukashin A.V.
    Petukhov D.I.
    Solntsev K.A.
    Inorganic Materials: Applied Research, 2018, 9 (1) : 82 - 87
  • [8] Development of anodic alumina membranes for hemodialysis
    Lu, Junfeng
    Lu, Wen-qiang
    2010 4TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING (ICBBE 2010), 2010,
  • [9] Thermal Stability of Porous Anodic Alumina Formed in Electrolytes with Surfactant Additives
    Shulgov, V.
    ACTA PHYSICA POLONICA A, 2018, 133 (04) : 767 - 770
  • [10] Formation of dense alumina nanowires from anodic alumina membranes
    Meier, L. A.
    Alvarez, A. E.
    Salinas, D. R.
    del Barrio, M. C.
    MATERIALS LETTERS, 2012, 85 : 146 - 148