Incorporating Context into Language Encoding Models for fMRI

被引:0
|
作者
Jain, Shailee [1 ]
Huth, Alexander G. [1 ,2 ]
机构
[1] Univ Texas Austin, Dept Comp Sci, Austin, TX 78751 USA
[2] Univ Texas Austin, Dept Neurosci, Austin, TX 78751 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Language encoding models help explain language processing in the human brain by learning functions that predict brain responses from the language stimuli that elicited them. Current word embedding-based approaches treat each stimulus word independently and thus ignore the influence of context on language understanding. In this work, we instead build encoding models using rich contextual representations derived from an LSTM language model. Our models show a significant improvement in encoding performance relative to state-of-the-art embeddings in nearly every brain area. By varying the amount of context used in the models and providing the models with distorted context, we show that this improvement is due to a combination of better word embeddings learned by the LSTM language model and contextual information. We are also able to use our models to map context sensitivity across the cortex. These results suggest that LSTM language models learn high-level representations that are related to representations in the human brain.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] The "Narratives" fMRI dataset for evaluating models of naturalistic language comprehension
    Nastase, Samuel A.
    Liu, Yun-Fei
    Hillman, Hanna
    Zadbood, Asieh
    Hasenfratz, Liat
    Keshavarzian, Neggin
    Chen, Janice
    Honey, Christopher J.
    Yeshurun, Yaara
    Regev, Mor
    Nguyen, Mai
    Chang, Claire H. C.
    Baldassano, Christopher
    Lositsky, Olga
    Simony, Erez
    Chow, Michael A.
    Leong, Yuan Chang
    Brooks, Paula P.
    Micciche, Emily
    Choe, Gina
    Goldstein, Ariel
    Vanderwal, Tamara
    Halchenko, Yaroslav O.
    Norman, Kenneth A.
    Hasson, Uri
    SCIENTIFIC DATA, 2021, 8 (01)
  • [22] The “Narratives” fMRI dataset for evaluating models of naturalistic language comprehension
    Samuel A. Nastase
    Yun-Fei Liu
    Hanna Hillman
    Asieh Zadbood
    Liat Hasenfratz
    Neggin Keshavarzian
    Janice Chen
    Christopher J. Honey
    Yaara Yeshurun
    Mor Regev
    Mai Nguyen
    Claire H. C. Chang
    Christopher Baldassano
    Olga Lositsky
    Erez Simony
    Michael A. Chow
    Yuan Chang Leong
    Paula P. Brooks
    Emily Micciche
    Gina Choe
    Ariel Goldstein
    Tamara Vanderwal
    Yaroslav O. Halchenko
    Kenneth A. Norman
    Uri Hasson
    Scientific Data, 8
  • [23] Improving Conversation-Context Language Models with Multiple Spoken Language Understanding Models
    Masumura, Ryo
    Tanaka, Tomohiro
    Ando, Atsushi
    Kamiyama, Hosana
    Oba, Takanobu
    Kobashikawa, Satoshi
    Aono, Yushi
    INTERSPEECH 2019, 2019, : 834 - 838
  • [24] Context-dependent factored language models
    Donaj, Gregor
    Kacic, Zdravko
    EURASIP JOURNAL ON AUDIO SPEECH AND MUSIC PROCESSING, 2017, : 1 - 16
  • [25] Language-derived information and context models
    Blessing, A
    Klatt, S
    Nicklas, D
    Volz, S
    Schütze, H
    FOURTH ANNUAL IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS WORKSHOPS, PROCEEDINGS, 2006, : 24 - +
  • [26] Context-dependent factored language models
    Gregor Donaj
    Zdravko Kačič
    EURASIP Journal on Audio, Speech, and Music Processing, 2017
  • [27] Identifying musical pieces from fMRI data using encoding and decoding models
    Sebastian Hoefle
    Annerose Engel
    Rodrigo Basilio
    Vinoo Alluri
    Petri Toiviainen
    Maurício Cagy
    Jorge Moll
    Scientific Reports, 8
  • [28] Identifying musical pieces from fMRI data using encoding and decoding models
    Hoefle, Sebastian
    Engel, Annerose
    Basilio, Rodrigo
    Alluri, Vinoo
    Toiviainen, Petri
    Cagy, Mauricio
    Moll, Jorge
    SCIENTIFIC REPORTS, 2018, 8
  • [29] WELDA: Enhancing Topic Models by Incorporating Local Word Context
    Bunk, Stefan
    Krestel, Ralf
    JCDL'18: PROCEEDINGS OF THE 18TH ACM/IEEE JOINT CONFERENCE ON DIGITAL LIBRARIES, 2018, : 293 - 302
  • [30] Incorporating Context Dependency of Species Interactions in Species Distribution Models
    Lany, Nina K.
    Zarnetske, Phoebe L.
    Gouhier, Tarik C.
    Menge, Bruce A.
    INTEGRATIVE AND COMPARATIVE BIOLOGY, 2017, 57 (01) : 159 - 167