Robust generalized linear mixed models for small area estimation

被引:4
|
作者
Maiti, T [1 ]
机构
[1] Univ Nebraska, Dept Math & Stat, Lincoln, NE 68588 USA
关键词
hierarchical model; improper prior; Markov chain Monte Carlo; partially proper prior; posterior propriety; small area estimation; survey data;
D O I
10.1016/S0378-3758(00)00302-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Use of generalized linear model for small area estimation is relatively new for the survey statisticians. For a unified analysis of both discrete and continuous data, this paper introduces hierarchical Bayes generalized mixed linear models. Constant variance normal distribution is usually assumed for small area specific random effects. This paper uses, instead, a finite mixture of normals as a prior for the random effects. Such prior is believed to be more robust than a normal prior. There are difficulties with this model, however. First, standard reference priors for the parameters of the mixture components yield improper posteriors. Second, posterior analysis does not provide a direct estimate of the number of components to be used for the mixture distribution. Both improper and partially proper prior distributions are used and a general theorem is provided to ensure the propriety of posteriors. The hierarchical Bayes procedure is implemented via Markov Chain Monte Carlo integration techniques. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:225 / 238
页数:14
相关论文
共 50 条
  • [21] Robust and efficient estimation of nonparametric generalized linear models
    Kalogridis, Ioannis
    Claeskens, Gerda
    Van Aelst, Stefan
    [J]. TEST, 2023, 32 (03) : 1055 - 1078
  • [22] Robust and efficient estimation of nonparametric generalized linear models
    Ioannis Kalogridis
    Gerda Claeskens
    Stefan Van Aelst
    [J]. TEST, 2023, 32 : 1055 - 1078
  • [23] Small area estimation with mixed models: a review
    Sugasawa, Shonosuke
    Kubokawa, Tatsuya
    [J]. JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2020, 3 (02) : 693 - 720
  • [24] Small area estimation with mixed models: a review
    Shonosuke Sugasawa
    Tatsuya Kubokawa
    [J]. Japanese Journal of Statistics and Data Science, 2020, 3 : 693 - 720
  • [25] On estimation and prediction for spatial generalized linear mixed models
    Zhang, H
    [J]. BIOMETRICS, 2002, 58 (01) : 129 - 136
  • [26] Estimation of group means in generalized linear mixed models
    Duan, Jiexin
    Levine, Michael
    Luo, Junxiang
    Qu, Yongming
    [J]. PHARMACEUTICAL STATISTICS, 2020, 19 (05) : 646 - 661
  • [27] Small area estimation under unit-level temporal linear mixed models
    Morales, Domingo
    Santamaria, Laureano
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2019, 89 (09) : 1592 - 1620
  • [28] Small area quantile estimation based on distribution function using linear mixed models
    Stachurski, Tomasz
    [J]. ECONOMICS AND BUSINESS REVIEW, 2021, 7 (02) : 97 - 114
  • [29] Robust parameter design using generalized linear mixed models
    Robinson, TJ
    Wulff, SS
    Montgomery, DC
    Khuri, AI
    [J]. JOURNAL OF QUALITY TECHNOLOGY, 2006, 38 (01) : 65 - 75
  • [30] Optimal Model Averaging Estimation for Generalized Linear Models and Generalized Linear Mixed-Effects Models
    Zhang, Xinyu
    Yu, Dalei
    Zou, Guohua
    Liang, Hua
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (516) : 1775 - 1790