Robust generalized linear mixed models for small area estimation

被引:4
|
作者
Maiti, T [1 ]
机构
[1] Univ Nebraska, Dept Math & Stat, Lincoln, NE 68588 USA
关键词
hierarchical model; improper prior; Markov chain Monte Carlo; partially proper prior; posterior propriety; small area estimation; survey data;
D O I
10.1016/S0378-3758(00)00302-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Use of generalized linear model for small area estimation is relatively new for the survey statisticians. For a unified analysis of both discrete and continuous data, this paper introduces hierarchical Bayes generalized mixed linear models. Constant variance normal distribution is usually assumed for small area specific random effects. This paper uses, instead, a finite mixture of normals as a prior for the random effects. Such prior is believed to be more robust than a normal prior. There are difficulties with this model, however. First, standard reference priors for the parameters of the mixture components yield improper posteriors. Second, posterior analysis does not provide a direct estimate of the number of components to be used for the mixture distribution. Both improper and partially proper prior distributions are used and a general theorem is provided to ensure the propriety of posteriors. The hierarchical Bayes procedure is implemented via Markov Chain Monte Carlo integration techniques. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:225 / 238
页数:14
相关论文
共 50 条
  • [1] Robust small area estimation in generalized linear mixed models
    Sanjoy K. Sinha
    [J]. METRON, 2019, 77 : 201 - 225
  • [2] Robust small area estimation in generalized linear mixed models
    Sinha, Sanjoy K.
    [J]. METRON-INTERNATIONAL JOURNAL OF STATISTICS, 2019, 77 (03): : 201 - 225
  • [3] Robust linear mixed models for Small Area Estimation
    Fabrizi, Enrico
    Trivisano, Carlo
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (02) : 433 - 443
  • [4] Spatial generalized linear mixed models in small area estimation
    Torabi, Mahmoud
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2019, 47 (03): : 426 - 437
  • [5] Robust estimation in generalized linear mixed models
    Yau, KKW
    Kuk, AYC
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2002, 64 : 101 - 117
  • [6] Small area estimation under area-level generalized linear mixed models
    Faltys, Ondrej
    Hobza, Tomas
    Morales, Domingo
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (12) : 7404 - 7426
  • [7] Non-parametric generalized linear mixed models in small area estimation
    Torabi, Mahmoud
    Shokoohi, Farhad
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2015, 43 (01): : 82 - 96
  • [8] Small Area Estimation Using the Generalized Linear Models
    Hradilova, Jana
    [J]. SPSM 2010: STOCHASTIC AND PHYSICAL MONITORING SYSTEMS, 2010, : 101 - 112
  • [9] Generalized linear models for small-area estimation
    Ghosh, M
    Natarajan, K
    Stroud, TWF
    Carlin, BP
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (441) : 273 - 282
  • [10] Clustering in small area estimation with area level linear mixed models
    Torkashvand, Elaheh
    Jozani, Mohammad Jafari
    Torabi, Mahmoud
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2017, 180 (04) : 1253 - 1279