How short is the runaway electron flow in an air electrode gap?

被引:40
|
作者
Mesyats, G. A. [1 ,2 ]
Yalandin, M., I [1 ,2 ]
Zubarev, N. M. [1 ,2 ]
Sadykova, A. G. [2 ]
Sharypov, K. A. [2 ]
Shpak, V. G. [2 ]
Shunailov, S. A. [2 ]
Ulmaskulov, M. R. [2 ]
Zubareva, O., V [2 ]
Kozyrev, A., V [3 ]
Semeniuk, N. S. [2 ,3 ]
机构
[1] Russian Acad Sci, Lebedev Phys Inst, Moscow 119991, Russia
[2] UB RAS, Inst Electrophys, Ekaterinburg 620016, Russia
[3] SB RAS, Inst High Current Elect, Tomsk 634055, Russia
关键词
MECHANISM; ACCELERATION; DIODE;
D O I
10.1063/1.5143486
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present and analyze characteristics of the runaway electron flow in a high-voltage (the voltage rise rate of up to 1.5 MV/ns) air-filled electrode gap with a strongly nonuniform electric field. It is demonstrated that such a flow contains a high-energy electron component of duration not more than 10 ps. According to numerical simulations, runaway electron generation/termination is governed by impact ionization of the gas near the cathode and switching on/off a critical (sufficient for electrons to run away) electric field at the boundary of the expanding cathode plasma. The corresponding characteristic time estimated to be 2-3 ps is defined by the ionization rate at a critical field. Published under license by AIP Publishing.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] AN AIR-GAP ENZYME ELECTRODE - DEVELOPMENT AND APPLICATIONS
    SHANKER, RM
    NASHED, NE
    LINDENBAUM, S
    PHARMACEUTICAL RESEARCH, 1992, 9 (04) : 485 - 491
  • [42] The temporal structure of a runaway electron beam generated in air at atmospheric pressure
    Rybka, D. V.
    Tarasenko, V. F.
    Burachenko, A. G.
    Balzovskii, E. V.
    TECHNICAL PHYSICS LETTERS, 2012, 38 (07) : 657 - 660
  • [43] Runaway electron beam generation by a plasma cathode in atmospheric air discharge
    Mastyugin, D. S.
    Osipov, V. V.
    Solomonov, V. I.
    TECHNICAL PHYSICS LETTERS, 2009, 35 (06) : 487 - 490
  • [44] Temporal and spatial structure of a runaway electron beam in air at atmospheric pressure
    Levko, D.
    Krasik, Ya. E.
    Tarasenko, V. F.
    Rybka, D. V.
    Burachenko, A. G.
    JOURNAL OF APPLIED PHYSICS, 2013, 113 (19)
  • [45] Simulation of the runaway electron beam formed in a discharge in air at atmospheric pressure
    Oreshkin, E. V.
    Barengolts, S. A.
    Chaikovsky, S. A.
    Oreshkin, V. I.
    PHYSICS OF PLASMAS, 2012, 19 (04)
  • [46] Conditions for the generation of runaway electrons in an air gap with an inhomogeneous electric field: theory and experiment
    Zubarev, N. M.
    Mesyats, G. A.
    Yalandin, M., I
    PHYSICS-USPEKHI, 2024, 67 (08) : 803 - 813
  • [47] Numerical simulation on streamer discharge of short air gap of atmospheric air
    Zhang, Yun
    Zeng, Rong
    Li, Xiao-Lin
    Luo, Bing
    Yang, Xue-Chang
    He, Jin-Liang
    Zhang, Bo
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2008, 28 (28): : 6 - 12
  • [48] FLOW BOILING IN A SHORT NARROW GAP CHANNEL
    Janssen, D. D.
    Dixon, J. M.
    Young, S. J.
    Kulacki, F. A.
    PROCEEDINGS OF THE ASME SUMMER HEAT TRANSFER CONFERENCE - 2013, VOL 2, 2014,
  • [49] A comparison between spectra of runaway electron beams in SF6 and air
    Zhang, Cheng
    Tarasenko, Victor
    Gu, Jianwei
    Baksht, Evgenii
    Wang, Ruexue
    Yan, Ping
    Shao, Tao
    PHYSICS OF PLASMAS, 2015, 22 (12)
  • [50] Runaway electron beams formed in atmospheric pressure air in a diode with dielectric films
    Tarasenko, Victor F.
    Kostyrya, Igor' D.
    INTERNATIONAL CONFERENCE ON ATOMIC AND MOLECULAR PULSED LASERS XIII, 2018, 10614