Time-dependent non-Hermitian Hamiltonians with real energies

被引:29
|
作者
Dutra, AD [1 ]
Hott, MB [1 ]
dos Santos, VGCS [1 ]
机构
[1] UNESP, BR-12516410 Guaratingueta, SP, Brazil
来源
EUROPHYSICS LETTERS | 2005年 / 71卷 / 02期
关键词
D O I
10.1209/epl/i2005-10073-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work we intend to study a class of time-dependent quantum systems with non-Hermitian Hamiltonians, particularly those whose Hermitian counterparts are important for the comprehension of posed problems in quantum optics and quantum chemistry. They consist of an oscillator with time-dependent mass and frequency under the action of a time-dependent imaginary potential. The wave functions are used to obtain the expectation value of the Hamiltonian. Although it is neither Hermitian nor PT symmetric, the Hamiltonian under study exhibits real values of energy.
引用
收藏
页码:166 / 171
页数:6
相关论文
共 50 条
  • [41] RESULTS ON CERTAIN NON-HERMITIAN HAMILTONIANS
    WONG, J
    JOURNAL OF MATHEMATICAL PHYSICS, 1967, 8 (10) : 2039 - &
  • [42] Making sense of non-Hermitian Hamiltonians
    Bender, Carl M.
    REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) : 947 - 1018
  • [43] Null bootstrap for non-Hermitian Hamiltonians
    Li, Wenliang
    PHYSICAL REVIEW D, 2022, 106 (12)
  • [44] Investigation of a non-Hermitian edge burst with time-dependent perturbation theory
    Wen, Pengyu
    Pi, Jinghui
    Long, Gui-Lu
    PHYSICAL REVIEW A, 2024, 109 (02)
  • [45] Eigenvalues of non-Hermitian Fibonacci Hamiltonians
    Domínguez-Adame, F
    PHYSICA B-CONDENSED MATTER, 2001, 307 (1-4) : 247 - 250
  • [46] Critical parameters for non-hermitian Hamiltonians
    Fernandez, Francisco M.
    Garcia, Javier
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 247 : 141 - 151
  • [47] Symmetries and Invariants for Non-Hermitian Hamiltonians
    Simon, Miguel Angel
    Buendia, Alvaro
    Muga, J. G.
    MATHEMATICS, 2018, 6 (07):
  • [48] Time scaling and quantum speed limit in non-Hermitian Hamiltonians
    Impens, F.
    D'Angelis, F. M.
    Pinheiro, F. A.
    Guery-Odelin, D.
    PHYSICAL REVIEW A, 2021, 104 (05)
  • [49] Homotopy characterization of non-Hermitian Hamiltonians
    Wojcik, Charles C.
    Sun, Xiao-Qi
    Bzdusek, Tomas
    Fan, Shanhui
    PHYSICAL REVIEW B, 2020, 101 (20)
  • [50] Adiabaticity condition for non-Hermitian Hamiltonians
    Ibanez, S.
    Muga, J. G.
    PHYSICAL REVIEW A, 2014, 89 (03):