Arbitrage-free interpolation of call option prices

被引:0
|
作者
Bender, Christian [1 ]
Thiel, Matthias [1 ]
机构
[1] Saarland Univ, Dept Math, Postfach 151150, D-66041 Saarbrucken, Germany
关键词
Static arbitrage; local volatility modeling; interpolation; IMPLIED VOLATILITY;
D O I
10.1515/strm-2018-0026
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we introduce a new interpolation method for call option prices and implied volatilities with respect to the strike, which first generates, for fixed maturity, an implied volatility curve that is smooth and free of static arbitrage. Our interpolation method is based on a distortion of the call price function of an arbitrage-free financial "reference" model of one's choice. It reproduces the call prices of the reference model if the market data is compatible with the model. Given a set of call prices for different strikes and maturities, we can construct a call price surface by using this one-dimensional interpolation method on every input maturity and interpolating the generated curves in the maturity dimension. We obtain the algorithm of N. Kahale [An arbitrage-free interpolation of volatilities, Risk 17 (2004), no. 5, 102-106] as a special case, when applying the Black-Scholes model as reference model.
引用
收藏
页码:55 / 78
页数:24
相关论文
共 50 条
  • [21] Approximate arbitrage-free option pricing under the SABR model
    Yang, Nian
    Chen, Nan
    Liu, Yanchu
    Wan, Xiangwei
    [J]. JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2017, 83 : 198 - 214
  • [22] AN ARBITRAGE-FREE ESTIMATE OF PREPAYMENT OPTION PRICES IN FIXED-RATE GNMA MORTGAGE-BACKED SECURITIES
    RONN, EI
    RUBINSTEIN, PD
    PAN, FS
    [J]. REAL ESTATE ECONOMICS, 1995, 23 (01) : 1 - 20
  • [23] Arbitrage-free XVA
    Bichuch, Maxim
    Capponi, Agostino
    Sturm, Stephan
    [J]. MATHEMATICAL FINANCE, 2018, 28 (02) : 582 - 620
  • [24] A note on arbitrage-free asset prices with and without personal income taxes
    Jochen Wilhelm
    Josef Schosser
    [J]. Review of Managerial Science, 2007, 1 (2) : 133 - 149
  • [25] A remark on the set of arbitrage-free prices in a multi-period model
    Cornet, Bernard
    Ranjan, Abhishek
    [J]. INTERNATIONAL JOURNAL OF ECONOMIC THEORY, 2013, 9 (01) : 35 - 43
  • [26] Simulation analysis for the pricing of bond option on arbitrage-free models with jump
    Park, Kisoeb
    Kim, Moonseong
    Kim, Seki
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2008, PT 2, PROCEEDINGS, 2008, 5073 : 887 - +
  • [27] Haar extensions of arbitrage-free financial markets to markets that are complete and arbitrage-free
    Bogachëva, MN
    Pavlov, IV
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2002, 57 (03) : 581 - 583
  • [28] SECURITIES MARKETS, DIFFUSION STATE PROCESSES, AND ARBITRAGE-FREE SHADOW PRICES
    HEANEY, J
    POITRAS, G
    [J]. JOURNAL OF FINANCIAL AND QUANTITATIVE ANALYSIS, 1994, 29 (02) : 223 - 239
  • [29] Characterization of arbitrage-free markets
    Strasser, E
    [J]. ANNALS OF APPLIED PROBABILITY, 2005, 15 (1A): : 116 - 124
  • [30] Arbitrage-free approximation of call price surfaces and input data risk
    Glaser, Judith
    Heider, Pascal
    [J]. QUANTITATIVE FINANCE, 2012, 12 (01) : 61 - 73