Sensitivity analysis in linear programming and semidefinite programming using interior-point methods

被引:32
|
作者
Yildirim, EA [1 ]
Todd, MJ [1 ]
机构
[1] Cornell Univ, Sch Operat Res & Ind Engn, Ithaca, NY 14853 USA
关键词
sensitivity analysis; interior-point methods; linear programming; semidefinite programming;
D O I
10.1007/PL00011423
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We analyze perturbations of the right-hand side and the cost parameters in linear programming (LP) and semidefinite programming (SDP). We obtain tight bounds on the perturbations that allow interior-point method:, to recover feasible and near-optimal solutions in a single interior-point iteration. For the unique. nondegenerate solution case in LP, we show that the bounds obtained using interior-point methods compare nicely with the hounds arising from using the optimal basis. We also present explicit bounds for SDP using the Monteiro-Zhang family of search directions and specialize them to the AHO, H..K..M, and NT directions.
引用
收藏
页码:229 / 261
页数:33
相关论文
共 50 条
  • [21] Structured Primal-dual Interior-point Methods for Banded Semidefinite Programming
    Deng, Zhiming
    Gu, Ming
    Overton, Michael L.
    TOPICS IN OPERATOR THEORY: OPERATORS, MATRICES AND ANALYTIC FUNCTIONS, VOL 1, 2010, 202 : 111 - +
  • [22] A Note on the Calculation of Step-Lengths in Interior-Point Methods for Semidefinite Programming
    Kim-Chuan Toh
    Computational Optimization and Applications, 2002, 21 : 301 - 310
  • [23] Exploiting sparsity in primal-dual interior-point methods for semidefinite programming
    Fujisawa, K
    Kojima, M
    Nakata, K
    MATHEMATICAL PROGRAMMING, 1997, 79 (1-3) : 235 - 253
  • [24] Optimized choice of parameters in interior-point methods for linear programming
    Santos, Luiz-Rafael
    Villas-Boas, Fernando
    Oliveira, Aurelio R. L.
    Perin, Clovis
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2019, 73 (02) : 535 - 574
  • [25] Optimized choice of parameters in interior-point methods for linear programming
    Luiz-Rafael Santos
    Fernando Villas-Bôas
    Aurelio R. L. Oliveira
    Clovis Perin
    Computational Optimization and Applications, 2019, 73 : 535 - 574
  • [26] Interior-point algorithms for semidefinite programming based on a nonlinear formulation
    Burer, S
    Monteiro, RDC
    Zhang, Y
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2002, 22 (01) : 49 - 79
  • [27] Interior-Point Algorithms for Semidefinite Programming Based on a Nonlinear Formulation
    Samuel Burer
    Renato D.C. Monteiro
    Yin Zhang
    Computational Optimization and Applications, 2002, 22 : 49 - 79
  • [28] PCx: An interior-point code for linear programming
    Czyzyk, J
    Mehrotra, S
    Wagner, M
    Wright, SJ
    OPTIMIZATION METHODS & SOFTWARE, 1999, 11-2 (1-4): : 397 - 430
  • [29] Study of search directions in primal-dual interior-point methods for semidefinite programming
    Todd, M.J.
    Optimization Methods and Software, 1999, 11 (01): : 1 - 46
  • [30] THE INTERIOR-POINT METHOD FOR LINEAR-PROGRAMMING
    ASTFALK, G
    LUSTIG, I
    MARSTEN, R
    SHANNO, D
    IEEE SOFTWARE, 1992, 9 (04) : 61 - 68