Algebraic Soft Decoding of Elliptic Codes

被引:2
|
作者
Wan, Yunqi [1 ]
Chen, Li [1 ]
Zhang, Fangguo [2 ]
机构
[1] Sun Yat Sen Univ, Sch Elect & Informat Technol, Guangzhou, Peoples R China
[2] Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou, Peoples R China
来源
2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT) | 2021年
基金
中国国家自然科学基金;
关键词
Algebraic soft decoding; basis reduction; elliptic codes; Grobner basis; interpolation; REED-SOLOMON;
D O I
10.1109/ISIT45174.2021.9518148
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper proposes algebraic soft decoding (ASD) for one-point elliptic codes, where the interpolation is realized through the perspective of obtaining a Grobner basis. The desired interpolation polynomial Q(x, y, z) is the minimum candidate in the basis. This work shows how to obtain such a Grobner basis. Based on an interpolation multiplicity matrix M, an interpolation ideal I-M can be defined. With a predefined decoding output list size (OLS) l (l >= deg(z) Q), an equivalent interpolation module I-M,I-l can be led to. By further defining the Lagrange interpolation functions, a basis of the interpolation module can be constructed. The desired Grobner basis can be obtained by reducing this module basis. Finally, the decoding complexity is also analyzed.
引用
收藏
页码:521 / 526
页数:6
相关论文
共 50 条
  • [31] Efficient architecture for algebraic soft-decision decoding of Reed-Solomon codes
    Li, Xuemei
    Zhang, Wei
    Liu, Yanyan
    IET COMMUNICATIONS, 2015, 9 (01) : 10 - 16
  • [32] List decoding of algebraic-geometric codes
    Shokrollahi, MA
    Wasserman, H
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (02) : 432 - 437
  • [33] ALGEBRAIC PROPERTIES OF BCH CODES USEFUL FOR DECODING
    DAROCHA, VC
    HONARY, BK
    BATE, SD
    INTERNATIONAL JOURNAL OF SATELLITE COMMUNICATIONS, 1989, 7 (03): : 225 - 229
  • [34] Recent results in the decoding of algebraic geometry codes
    Jensen, HE
    Nielsen, RR
    Hoholdt, T
    1998 INFORMATION THEORY WORKSHOP - KILLARNEY, IRELAND, 1998, : 35 - 36
  • [35] On Decoding Algebraic Codes Using Radical Locators
    Lin, Tsung-Ching
    Lee, Chong-Dao
    Truong, Trieu-Kien
    Chang, Yaotsu
    Chen, Yan-Haw
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (11) : 6835 - 6854
  • [36] ALGEBRAIC ANALOG DECODING OF LINEAR BINARY CODES
    RUDOLPH, LD
    HARTMANN, CRP
    HWANG, TY
    DUC, NQ
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1979, 25 (04) : 430 - 440
  • [37] Improved Power Decoding of Algebraic Geometry Codes
    Puchinger, Sven
    Rosenkilde, Johan
    Solomatov, Grigory
    2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 509 - 514
  • [38] ON THE DECODING OF ALGEBRAIC GEOMETRIC CODES BASED ON FIA
    Ren Jian (Beijing University of Posts and TeJecommunications
    Journal of Electronics(China), 1996, (01) : 23 - 30
  • [39] List decoding performance of algebraic geometric codes
    Chen, L.
    Carrasco, R. A.
    Johnston, M.
    ELECTRONICS LETTERS, 2006, 42 (17) : 986 - 988
  • [40] ALGEBRAIC DECODING OF CLASS OF MULTILEVEL PSEUDOCYCLIC CODES
    DAROCHA, VC
    ELECTRONICS LETTERS, 1989, 25 (05) : 341 - 342