Specification Test for Spatial Autoregressive Models

被引:11
|
作者
Su, Liangjun [1 ]
Qu, Xi [2 ]
机构
[1] Singapore Management Univ, Sch Econ, Singapore 178903, Singapore
[2] Shanghai Jiao Tong Univ, Antai Coll Econ & Management, Shanghai 200052, Peoples R China
关键词
Generalized method of moments; Nonlinearity; Spatial autoregression; Spatial dependence; Specification test; DYNAMIC PANEL-DATA; MAXIMUM LIKELIHOOD ESTIMATORS; NONPARAMETRIC-ESTIMATION; REGRESSION-FUNCTIONS; GMM ESTIMATION; GROWTH; IDENTIFICATION;
D O I
10.1080/07350015.2015.1102734
中图分类号
F [经济];
学科分类号
02 ;
摘要
This article considers a simple test for the correct specification of linear spatial autoregressive models, assuming that the choice of the weight matrix Wn is true. We derive the limiting distributions of the test under the null hypothesis of correct specification and a sequence of local alternatives. We show that the test is free of nuisance parameters asymptotically under the null and prove the consistency of our test. To improve the finite sample performance of our test, we also propose a residual-based wild bootstrap and justify its asymptotic validity. We conduct a small set of Monte Carlo simulations to investigate the finite sample properties of our tests. Finally, we apply the test to two empirical datasets: the vote cast and the economic growth rate. We reject the linear spatial autoregressive model in the vote cast example but fail to reject it in the economic growth rate example. Supplementary materials for this article are available online.
引用
收藏
页码:572 / 584
页数:13
相关论文
共 50 条
  • [21] On unit roots for spatial autoregressive models
    Paulauskas, Vygantas
    JOURNAL OF MULTIVARIATE ANALYSIS, 2007, 98 (01) : 209 - 226
  • [22] GMM inference in spatial autoregressive models
    Taspinar, Suleyman
    Dogan, Osman
    Vijverberg, Wim P. M.
    ECONOMETRIC REVIEWS, 2018, 37 (09) : 931 - 954
  • [23] Bayesian estimation of spatial autoregressive models
    LeSage, JP
    INTERNATIONAL REGIONAL SCIENCE REVIEW, 1997, 20 (1-2) : 113 - 129
  • [24] Variable selection for spatial autoregressive models
    Xie, Li
    Wang, Xiaorui
    Cheng, Weihu
    Tang, Tian
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (06) : 1325 - 1340
  • [25] Simultaneous autoregressive models for spatial extremes
    Fix, Miranda J.
    Cooley, Daniel S.
    Thibaud, Emeric
    ENVIRONMETRICS, 2021, 32 (02)
  • [26] Spatial autocorrelation and autoregressive models in ecology
    Lichstein, JW
    Simons, TR
    Shriner, SA
    Franzreb, KE
    ECOLOGICAL MONOGRAPHS, 2002, 72 (03) : 445 - 463
  • [27] Spatial autoregressive models for scan statistic
    Mohamed-Salem Ahmed
    Lionel Cucala
    Michaël Genin
    Journal of Spatial Econometrics, 2021, 2 (1):
  • [28] Cox-type tests for competing spatial autoregressive models with spatial autoregressive disturbances
    Jin, Fei
    Lee, Lung-fei
    REGIONAL SCIENCE AND URBAN ECONOMICS, 2013, 43 (04) : 590 - 616
  • [29] A nonparametric test of conditional autoregressive heteroscedasticity for threshold autoregressive models
    Chen, M
    Chen, GM
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2001, 29 (04): : 649 - 666
  • [30] A TEST OF LINEARITY FOR FUNCTIONAL AUTOREGRESSIVE MODELS
    POGGI, JM
    PORTIER, B
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (01): : 113 - 116