Investigating the origin of acoustic attenuation in liquid foams

被引:4
|
作者
Pierre, Juliette [1 ]
Gaulon, Camille [2 ]
Derec, Caroline [2 ]
Elias, Florence [2 ,3 ]
Leroy, Valentin [2 ]
机构
[1] UPMC Univ Paris 06, Sorbonne Univ, Inst Jean Le Rond dAlembert, CNRS,UMR 7190, Paris, France
[2] Univ Paris Diderot, Sorbonne Paris Cite, Lab Matiere & Syst Complexes, CNRS,UMR 7057, Paris, France
[3] UPMC Univ Paris 06, Sorbonne Univ, Lab Matiere & Syst Complexes, CNRS,UMR 7057, Paris, France
来源
EUROPEAN PHYSICAL JOURNAL E | 2017年 / 40卷 / 08期
关键词
SOUND-WAVES; PROPAGATION; RHEOLOGY;
D O I
10.1140/epje/i2017-11562-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Liquid foams are known to be highly efficient to absorb acoustic waves but the origin of the sound dissipation remains unknown. In this paper, we present low frequency (0.5-4 kHz) experimental results measured with an impedance tube and we confront the recorded attenuations with a simple model that considers the foam as a concentrate bubbly liquid. In order to identify the influence of the different parameters constituting the foams we probe samples with different gases, and various liquid fractions and bubble size distributions. We demonstrate that the intrinsic acoustic attenuation in the liquid foam is due to both thermal and viscous losses. The physical mechanism of the viscous term is not elucidated but the microscopic effective viscosity evidenced here can be described by a phenomenological law scaling with the bubble size and the gas density. In our experimental configuration a third dissipation term occurs. It comes from the viscous friction on the wall of the impedance tube and it is well described by the Kirchhoff law considering the macroscopic effective viscosity classically measured in rheology experiments.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [31] RHEOLOGY OF LIQUID FOAMS
    PITHIA, KD
    EDWARDS, SF
    PHYSICA A, 1994, 205 (04): : 565 - 576
  • [32] Instabilities in liquid foams
    Weaire, D.
    Vaz, M. F.
    Teixeira, P. I. C.
    Fortes, M. A.
    SOFT MATTER, 2007, 3 (01) : 47 - 57
  • [33] Attenuation of shock waves propagating in polyurethane foams
    K. Kitagawa
    M. Yasuhara
    K. Takayama
    Shock Waves, 2006, 15 : 437 - 445
  • [34] Drainage and attenuation capacity of particulate aqueous foams
    Britan, A.
    Liverts, M.
    Ben-Dor, G.
    SHOCK WAVES, VOL 2, PROCEEDINGS, 2009, : 1395 - 1400
  • [35] Liquid foams: an introduction
    Vaz, M. Fatima
    PHILOSOPHICAL MAGAZINE LETTERS, 2008, 88 (9-10) : 627 - 636
  • [36] THE EVOLUTION OF LIQUID FOAMS
    EDWARDS, SF
    PITHIA, KD
    PHYSICA A, 1994, 205 (04): : 548 - 564
  • [37] Liquid flow in foams
    Gol'dfarb, I.I.
    Kann, K.B.
    Shreiber, I.R.
    Fluid Dynamics, 1988, : 244 - 249
  • [38] The Acoustics of Liquid Foams
    Elias, Florence
    Crassous, Jerome
    Derec, Caroline
    Dollet, Benjamin
    Drenckhan, Wiebke
    Gay, Cyprien
    Leroy, Valentin
    Nous, Camille
    Pierre, Juliette
    Saint-Jalmes, Arnaud
    CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2020, 50 (50)
  • [39] Dilatancy in liquid foams
    Weaire, D
    Hutzler, S
    PHILOSOPHICAL MAGAZINE, 2003, 83 (23): : 2747 - 2760
  • [40] Dynamic Attenuation and Compressive Characterization of Syntactic Foams
    Ale, Bhaskar
    Rousseau, Carl-Ernst
    JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 2013, 135 (03):