Creep and stress relaxation of hybrid organic-inorganic aerogels

被引:10
|
作者
de la Rosa-Fox, N. [1 ]
Fernandez, J. A. Toledo [1 ]
Morales-Florez, V. [2 ]
Pinero, M. [3 ]
Esquivias, L. [4 ]
机构
[1] Univ Cadiz, Dept Fis Mat Condensada, Cadiz, Spain
[2] ICMSE, CSIC, Fis Mat, Seville, Spain
[3] Univ Cadiz, CASEM, Dept Fis Aplicada, Cadiz, Spain
[4] Univ Seville, Dept Fis Mat Condensada, Seville, Spain
来源
关键词
organic-inorganic hybrid aerogel; uniaxial compression; nanoindentation; creep compliance; stress relaxation; SILICA AEROGELS; NANOINDENTATION; INDENTATION;
D O I
10.4028/www.scientific.net/KEM.423.167
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Organic/inorganic hybrids silica aerogels were synthesized by the classical sol-gel method with application of high power ultrasounds to the liquid mixture. Precursors were tetraethoxysilane (TEOS), as inorganic phase, and polydimethyl siloxane (PDMS), as organic one. These hybrid organic-inorganic materials are known as ORMOSIL (ORganically MOdified SILicates). Monolithic aerogels were obtained by supercritical drying in ethanol. Failure tests by uniaxial compression shows an increase of the rupture modulus as well as a decrease of the Young's modulus with the polymer content, tuning from a brittle solid to a rubbery-like one. These hybrid aerogels behave as elastomers showing a decrease in the relaxation viscoelastic modulus. Nanoindentation tests have been performed in these hybrid aerogels: load/unload cycles about 1.5 mN of maximum load have shown a decreasing value of the reduced modulus, as well as both plastic and elastic work with the organic content, while hardness remains almost constant. Elastic recovery parameter rised with the increasing organic content. Results from creep tests made with uniaxial compression configuration are discussed and compared with nanoindentation. Viscoelastic behavior of these hybrids materials can be described by a rheological model.
引用
收藏
页码:167 / +
页数:2
相关论文
共 50 条
  • [31] Organic-inorganic hybrid reinforcements for biocomposite
    Han, Seong Ok
    Ahn, Ho Jung
    Kim, Jun Soo
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231
  • [32] Organic-inorganic hybrid melting gels
    Klein, Lisa C.
    Jitianu, Andrei
    JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2010, 55 (01) : 86 - 93
  • [33] Hybrid organic-inorganic polariton laser
    Paschos, G. G.
    Somaschi, N.
    Tsintzos, S. I.
    Coles, D.
    Bricks, J. L.
    Hatzopoulos, Z.
    Lidzey, D. G.
    Lagoudakis, P. G.
    Savvidis, P. G.
    SCIENTIFIC REPORTS, 2017, 7
  • [34] HYBRID ORGANIC-INORGANIC INTERPENETRATING NETWORKS
    BRENNAN, AB
    MILLER, TM
    VINOCUR, RB
    HYBRID ORGANIC-INORGANIC COMPOSITES, 1995, 585 : 142 - 162
  • [35] Elastic organic–inorganic hybrid aerogels and xerogels
    Kazuyoshi Kanamori
    Mamoru Aizawa
    Kazuki Nakanishi
    Teiichi Hanada
    Journal of Sol-Gel Science and Technology, 2008, 48 : 172 - 181
  • [36] Nanoindentation on hybrid organic/inorganic silica aerogels
    de la Rosa-Fox, N.
    Morales-Florez, V.
    Toledo-Fernandez, J. A.
    Pinero, M.
    Mendoza-Serna, R.
    Esquivias, L.
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2007, 27 (11) : 3311 - 3316
  • [37] Organic-Inorganic Hybrid Magnetic Latex
    Rahman, Md Mahbubor
    Elaissari, Abdelhamid
    HYBRID LATEX PARTICLES: PREPARATION WITH (MINI) EMULSION POLYMERIZATION, 2010, 233 : 237 - 281
  • [38] A hybrid organic-inorganic perovskite dataset
    Chiho Kim
    Tran Doan Huan
    Sridevi Krishnan
    Rampi Ramprasad
    Scientific Data, 4
  • [39] Organic-inorganic hybrid perovskite electronics
    Kang, Joohoon
    Cho, Jeong Ho
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (24) : 13347 - 13357
  • [40] Excitons in hybrid organic-inorganic nanostructures
    F. Bassani
    G. C. La Rocca
    D. M. Basko
    V. M. Agranovich
    Physics of the Solid State, 1999, 41 : 701 - 703