Lower bounds for approximation by MLP neural networks

被引:113
|
作者
Maiorov, V [1 ]
Pinkus, A [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
关键词
multilayer feedforward perceptron model; degree of approximation; lower bounds; Kolmogorov superposition theorem;
D O I
10.1016/S0925-2312(98)00111-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The degree of approximation by a single hidden layer MLP model with n units in the hidden layer is bounded below by the degree of approximation by a linear combination of n ridge functions. We prove that there exists an analytic, strictly monotone, sigmoidal activation function for which this lower bound is essentially attained. We also prove, using this same activation function, that one can approximate arbitrarily well any continuous function on any compact domain by a two hidden layer MLP using a fixed finite number of units in each layer. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:81 / 91
页数:11
相关论文
共 50 条
  • [31] Modeling of MOSFET Transistor by MLP Neural Networks
    Lamamra, K.
    Berrah, S.
    RECENT ADVANCES IN ELECTRICAL ENGINEERING AND CONTROL APPLICATIONS, 2017, 411 : 407 - 415
  • [32] Lower bounds on correction networks
    Stachowiak, G
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2003, 2906 : 221 - 229
  • [33] Drought Forecasting Using MLP Neural Networks
    Hong, Daniel
    Hong, Kee An
    2015 8TH INTERNATIONAL CONFERENCE ON U- AND E-SERVICE, SCIENCE AND TECHNOLOGY (UNESST), 2015, : 62 - 65
  • [34] On MCMC sampling in Bayesian MLP neural networks
    Vehtari, A
    Särkkä, S
    Lampinen, J
    IJCNN 2000: PROCEEDINGS OF THE IEEE-INNS-ENNS INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOL I, 2000, : 317 - 322
  • [35] Lower Bounds for k-Distance Approximation
    Merigot, Quentin
    PROCEEDINGS OF THE TWENTY-NINETH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SOCG'13), 2013, : 435 - 440
  • [36] On some lower bounds and approximation formulas for n!
    Obaid, Mustafa A.
    LIFE SCIENCE JOURNAL-ACTA ZHENGZHOU UNIVERSITY OVERSEAS EDITION, 2012, 9 (03): : 743 - 745
  • [37] LOWER BOUNDS FOR 2 DIOPHANTINE APPROXIMATION FUNCTIONS
    BETKE, U
    WILLS, JM
    MONATSHEFTE FUR MATHEMATIK, 1972, 76 (03): : 214 - &
  • [38] LOWER BOUNDS ON THE APPROXIMATION OF THE MULTIVARIATE EMPIRICAL PROCESS
    BECK, J
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 70 (02): : 289 - 306
  • [39] UPPER AND LOWER BOUNDS FOR APPROXIMATION IN THE GAP METRIC
    GEORGIOU, TT
    SMITH, MC
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1993, 38 (06) : 946 - 951
  • [40] On Sharpness of Error Bounds for Univariate Approximation by Single Hidden Layer Feedforward Neural Networks
    Goebbels, Steffen
    RESULTS IN MATHEMATICS, 2020, 75 (03)