CONVERGENCE ANALYSIS OF NEWTON-LIKE METHODS FOR INVERSE EIGENVALUE PROBLEMS WITH MULTIPLE EIGENVALUES

被引:7
|
作者
Shen, Weiping [1 ]
Li, Chong [2 ]
Yao, Jen-Chih [3 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[2] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
[3] China Med Univ, Ctr Gen Educ, Taichung 40402, Taiwan
基金
中国国家自然科学基金;
关键词
nonlinear equation; inverse eigenvalue problem; Newton's method; Newton-like method;
D O I
10.1137/15M1049063
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide in the present paper a corrected proof for the classical quadratical convergence theorem (i.e., Theorem 3.3 in Friedland, Nocedal, and Overton [SIAM T. Numer. Anal., 24 (1987), pp. 634-667]) of the Newton-like method for solving inverse eigenvalue problems with possible multiple eigenvalues. Moreover, as a by-product, our approach developed here can be extended to establish a similar convergence result for an inexact version of the Newton-like method with possible multiple eigenvalues, which is an extension of the corresponding inexact Newton-like method for the distinct case in Chan, Chung, and Xu [BIT Numer. Math., 43 (2003), pp. 7-20].
引用
收藏
页码:2938 / 2950
页数:13
相关论文
共 50 条
  • [41] COMPARING THE LOCAL CONVERGENCE ANALYSIS OF SOME NEWTON-LIKE METHODS FOR SOLVING EQUATIONS
    Argyros, Ioannis K.
    Shrestha, Nirjal
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2018, 17 (07): : 503 - 518
  • [42] Local convergence analysis of inexact Newton-like methods under majorant condition
    O. P. Ferreira
    M. L. N. Gonçalves
    Computational Optimization and Applications, 2011, 48 : 1 - 21
  • [43] PRECONDITIONED INEXACT NEWTON-LIKE METHOD FOR LARGE NONSYMMETRIC EIGENVALUE PROBLEMS
    Miao, Hong-Yi
    Wang, Li
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2021, 11 (04): : 677 - 685
  • [44] Families of Newton-like methods with fourth-order convergence
    Jain, Divya
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2013, 90 (05) : 1072 - 1082
  • [45] CONCERNING THE RADII OF CONVERGENCE FOR A CERTAIN CLASS OF NEWTON-LIKE METHODS
    Argyros, Ioannis K.
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2008, 15 (01): : 47 - 55
  • [46] Newton-like methods for solving vector optimization problems
    Lu, Fang
    Chen, Chun-Rong
    APPLICABLE ANALYSIS, 2014, 93 (08) : 1567 - 1586
  • [47] The convergence ball of Newton-like methods in Banach space and applications
    Chen, Jinhai
    Sun, Qingying
    TAIWANESE JOURNAL OF MATHEMATICS, 2007, 11 (02): : 383 - 397
  • [48] CONVERGENCE OF NEWTON-LIKE METHODS FOR SOLVING SYSTEMS OF NONLINEAR EQUATIONS
    BUS, JCP
    NUMERISCHE MATHEMATIK, 1977, 27 (03) : 271 - 281
  • [49] A CLASS OF NEWTON-LIKE METHODS WITH CUBIC CONVERGENCE FOR NONLINEAR EQUATIONS
    Ye, Qiaojun
    Xu, Xiubin
    FIXED POINT THEORY, 2010, 11 (01): : 161 - 168
  • [50] On the convergence of newton-like methods under general and unifying conditions
    Argyros, Ioannis K.
    Gutierrez, Jose M.
    FIXED POINT THEORY AND APPLICATIONS, VOL 6, 2007, 6 : 7 - +