CONVERGENCE ANALYSIS OF NEWTON-LIKE METHODS FOR INVERSE EIGENVALUE PROBLEMS WITH MULTIPLE EIGENVALUES

被引:7
|
作者
Shen, Weiping [1 ]
Li, Chong [2 ]
Yao, Jen-Chih [3 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[2] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
[3] China Med Univ, Ctr Gen Educ, Taichung 40402, Taiwan
基金
中国国家自然科学基金;
关键词
nonlinear equation; inverse eigenvalue problem; Newton's method; Newton-like method;
D O I
10.1137/15M1049063
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide in the present paper a corrected proof for the classical quadratical convergence theorem (i.e., Theorem 3.3 in Friedland, Nocedal, and Overton [SIAM T. Numer. Anal., 24 (1987), pp. 634-667]) of the Newton-like method for solving inverse eigenvalue problems with possible multiple eigenvalues. Moreover, as a by-product, our approach developed here can be extended to establish a similar convergence result for an inexact version of the Newton-like method with possible multiple eigenvalues, which is an extension of the corresponding inexact Newton-like method for the distinct case in Chan, Chung, and Xu [BIT Numer. Math., 43 (2003), pp. 7-20].
引用
收藏
页码:2938 / 2950
页数:13
相关论文
共 50 条