Numerical approximations of the Mumford-Shah functional for unit vector fields

被引:1
|
作者
Haehnle, Jonas [1 ]
机构
[1] Univ Tubingen, Math Inst, D-72076 Tubingen, Germany
关键词
FINITE-ELEMENT APPROXIMATION; STATIONARY HARMONIC MAPS; NEMATIC LIQUID-CRYSTALS; IMAGE SEGMENTATION; REGULARITY; DISCRETIZATION; ENHANCEMENT; RELAXATION; EVOLUTION; FLOW;
D O I
10.4171/IFB/259
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two numerical approximation schemes for minimising the Mumford-Shah functional for unit vector fields are proposed, analysed, and compared. The first uses a projection strategy, the second a penalisation strategy to enforce the sphere constraint. Both schemes are then applied to the segmentation of colour images using the Chromaticity and Brightness colour model.
引用
收藏
页码:297 / 326
页数:30
相关论文
共 50 条
  • [31] A Mumford-Shah model on lattice
    Yu, Lu
    Wang, Qiao
    Wu, Lenan
    Me, Jun
    IMAGE AND VISION COMPUTING, 2008, 26 (12) : 1663 - 1669
  • [32] Combinatorial Optimization of the Discretized Multiphase Mumford-Shah Functional
    El-Zehiry, Noha Youssry
    Grady, Leo
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2013, 104 (03) : 270 - 285
  • [33] An Overview of the Mumford-Shah Problem
    Nicola Fusco
    Milan Journal of Mathematics, 2003, 71 (1) : 95 - 119
  • [34] The Multiphase Mumford-Shah Problem
    Bucur, Dorin
    Fragala, Ilaria
    Giacomini, Alessandro
    SIAM JOURNAL ON IMAGING SCIENCES, 2019, 12 (03): : 1561 - 1583
  • [35] Numerical study of a new global minimizer for the Mumford-Shah functional in R3
    Merlet, Benoit
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2007, 13 (03): : 553 - 569
  • [36] CHARACTERIZATION OF GLOBAL MINIMIZERS FOR MUMFORD-SHAH FUNCTIONAL IN IMAGE SEGMENTATION
    BONNET, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (08): : 1121 - 1126
  • [37] C-1-Arcs for minimizers of the Mumford-Shah functional
    David, G
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1996, 56 (03) : 783 - 888
  • [38] Singular Sets of Minimizers for the Mumford-Shah Functional, vol 233
    Radulescu, Vicentiu
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 52 (05): : 598 - 599
  • [39] Hierarchical models in statistical inverse problems and the Mumford-Shah functional
    Helin, T.
    Lassas, M.
    INVERSE PROBLEMS, 2011, 27 (01)
  • [40] SIMULTANEOUS RECONSTRUCTION AND SEGMENTATION WITH THE MUMFORD-SHAH FUNCTIONAL FOR ELECTRON TOMOGRAPHY
    Shen, Li
    Quinto, Eric Todd
    Wang, Shiqiang
    Jiang, Ming
    INVERSE PROBLEMS AND IMAGING, 2018, 12 (06) : 1343 - 1364