A Multi-objective Genetic Algorithm for Model Selection for Support Vector Machines

被引:0
|
作者
Bouraoui, Amal [1 ]
Ben Ayed, Yassine [1 ]
Jamoussi, Salma [1 ]
机构
[1] MIRACL Sfax Univ, Multimedia InfoRmat Syst & Adv Comp Lab, Sfax Tunisia Technopole Sfax, Sfax 3021, Tunisia
关键词
Parameter selection; kernel function setting; multi-objective genetic algorithm NSGA-II; support vector machines (SVMs); CLASSIFICATION; OPTIMIZATION; PARAMETERS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Selecting the proper Kernel function in SVMs and the specific parameters for that kernel is an important step in achieving a high performance learning machine. The objective of this research is to optimize SVMs parameters using different kernel functions. We cast this problem as a multi-objective optimization problem, where the classification accuracy, the number of support vectors and the margin define our objective functions. So, we introduce a method based on multi-objective evolutionary algorithm NSGA-II to solve this problem. We also introduce a multi-criteria selection operator for our NSGA-II. The proposed method is applied on some benchmark datasets. The experimental obtained results show the efficiency of the proposed method.
引用
收藏
页码:809 / 819
页数:11
相关论文
共 50 条
  • [31] A micro multi-objective genetic algorithm for multi-objective optimizations
    Liu, G. P.
    Han, X.
    [J]. CJK-OSM 4: THE FOURTH CHINA-JAPAN-KOREA JOINT SYMPOSIUM ON OPTIMIZATION OF STRUCTURAL AND MECHANICAL SYSTEMS, 2006, : 419 - 424
  • [32] Prediction using multi-objective slime mould algorithm optimized support vector regression model
    Peng, Chong
    Che, Zhongyuan
    Liao, T. W.
    Zhang, Zhongwen
    [J]. APPLIED SOFT COMPUTING, 2023, 145
  • [33] Model selection for support vector machines
    Chapelle, O
    Vapnik, V
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 12, 2000, 12 : 230 - 236
  • [34] A Multi-Objective Genetic Algorithm Method to Support Multi-Agent Negotiations
    Beheshti, R.
    Rahmani, A. T.
    [J]. 2009 SECOND INTERNATIONAL CONFERENCE ON FUTURE INFORMATION TECHNOLOGY AND MANAGEMENT ENGINEERING, FITME 2009, 2009, : 596 - 599
  • [35] Boosted support vector machines with genetic selection
    Ramirez-Morales, A.
    Salmon-Gamboa, J. U.
    Li, Jin
    Sanchez-Reyna, A. G.
    Palli-Valappil, A.
    [J]. APPLIED INTELLIGENCE, 2023, 53 (05) : 4996 - 5012
  • [36] Boosted support vector machines with genetic selection
    A. Ramirez-Morales
    J. U. Salmon-Gamboa
    Jin Li
    A. G. Sanchez-Reyna
    A. Palli-Valappil
    [J]. Applied Intelligence, 2023, 53 : 4996 - 5012
  • [37] An Improved Multi-Objective Genetic Algorithm for Solving Multi-objective Problems
    Hsieh, Sheng-Ta
    Chiu, Shih-Yuan
    Yen, Shi-Jim
    [J]. APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (05): : 1933 - 1941
  • [38] Hybrid Multi-Objective Genetic Algorithm for Multi-Objective Optimization Problems
    Zhang, Song
    Wang, Hongfeng
    Yang, Di
    Huang, Min
    [J]. 2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 1970 - 1974
  • [39] A multi-objective evolutionary approach to training set selection for support vector machine
    Acampora, Giovanni
    Herrera, Francisco
    Tortora, Genoveffa
    Vitiello, Autilia
    [J]. KNOWLEDGE-BASED SYSTEMS, 2018, 147 : 94 - 108
  • [40] Multi-objective path selection model and algorithm for emergency evacuation
    Yuan, Yuan
    Wang, Dingwei
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS, VOLS 1-6, 2007, : 340 - 344