A Multi-objective Genetic Algorithm for Model Selection for Support Vector Machines

被引:0
|
作者
Bouraoui, Amal [1 ]
Ben Ayed, Yassine [1 ]
Jamoussi, Salma [1 ]
机构
[1] MIRACL Sfax Univ, Multimedia InfoRmat Syst & Adv Comp Lab, Sfax Tunisia Technopole Sfax, Sfax 3021, Tunisia
关键词
Parameter selection; kernel function setting; multi-objective genetic algorithm NSGA-II; support vector machines (SVMs); CLASSIFICATION; OPTIMIZATION; PARAMETERS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Selecting the proper Kernel function in SVMs and the specific parameters for that kernel is an important step in achieving a high performance learning machine. The objective of this research is to optimize SVMs parameters using different kernel functions. We cast this problem as a multi-objective optimization problem, where the classification accuracy, the number of support vectors and the margin define our objective functions. So, we introduce a method based on multi-objective evolutionary algorithm NSGA-II to solve this problem. We also introduce a multi-criteria selection operator for our NSGA-II. The proposed method is applied on some benchmark datasets. The experimental obtained results show the efficiency of the proposed method.
引用
收藏
页码:809 / 819
页数:11
相关论文
共 50 条
  • [1] A multi-objective genetic algorithm for simultaneous model and feature selection for support vector machines
    Amal Bouraoui
    Salma Jamoussi
    Yassine BenAyed
    [J]. Artificial Intelligence Review, 2018, 50 : 261 - 281
  • [2] A multi-objective genetic algorithm for simultaneous model and feature selection for support vector machines
    Bouraoui, Amal
    Jamoussi, Salma
    BenAyed, Yassine
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2018, 50 (02) : 261 - 281
  • [3] Multi-objective model selection for support vector machines
    Igel, C
    [J]. EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, 2005, 3410 : 534 - 546
  • [4] A Multi-Objective Genetic Algorithm for Pruning Support Vector Machines
    Hady, Mohamed Farouk Abdel
    Herbawi, Wesam
    Weber, Michael
    Schwenker, Friedhelm
    [J]. 2011 23RD IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2011), 2011, : 269 - 275
  • [5] Bias and Variance Multi-objective Optimization for Support Vector Machines Model Selection
    Rosales-Perez, Alejandro
    Jair Escalante, Hugo
    Gonzalez, Jesus A.
    Reyes-Garcia, Carlos A.
    Coello Coello, Carlos A.
    [J]. PATTERN RECOGNITION AND IMAGE ANALYSIS, IBPRIA 2013, 2013, 7887 : 108 - 116
  • [6] Surrogate-assisted multi-objective model selection for support vector machines
    Rosales-Perez, Alejandro
    Gonzalez, Jesus A.
    Coello Coello, Carlos A.
    Jair Escalante, Hugo
    Reyes-Garcia, Carlos A.
    [J]. NEUROCOMPUTING, 2015, 150 : 163 - 172
  • [7] Multi-Objective Genetic Algorithms for Sparse Least Square Support Vector Machines
    Silva, Danilo Avilar
    Rocha Neto, Ajalmar Rego
    [J]. INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2014, 2014, 8669 : 158 - 166
  • [8] Using support vector machines in multi-objective optimization
    Yun, YB
    Nakayama, H
    Arakawa, M
    [J]. 2004 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2004, : 223 - 228
  • [9] Controlling Overfitting with Multi-Objective Support Vector Machines
    Mierswa, Ingo
    [J]. GECCO 2007: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2, 2007, : 1830 - 1837
  • [10] Attribute selection with a multi-objective genetic algorithm
    Pappa, GL
    Freitas, AA
    Kaestner, CAA
    [J]. ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2002, 2507 : 280 - 290