Pointwise multiple averages for sublinear functions

被引:4
|
作者
Donoso, Sebastian [1 ]
Koutsogiannis, Andreas [2 ]
Sun, Wenbo [2 ]
机构
[1] Univ OHiggins, Inst Ciencias Ingn, Ave Libertador Bernardo OHiggins 611, Rancagua 2841959, Chile
[2] Ohio State Univ, Dept Math, 231 West 18th Ave, Columbus, OH 43210 USA
关键词
pointwise convergence; multiple averages; sublinear functions; Fejer functions; Hardy functions; ERGODIC AVERAGES; NORM CONVERGENCE; COMMUTING TRANSFORMATIONS; SURE CONVERGENCE; HARDY SEQUENCES; RECURRENCE; SZEMEREDI; THEOREM; CUBES;
D O I
10.1017/etds.2018.118
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For any measure-preserving system. X; B; ; T1; : : :; Td / with no commutativity assumptions on the transformations Ti; 1 i d; we study the pointwise convergence of multiple ergodic averages with iterates of different growth coming from a large class of sublinear functions. This class properly contains important subclasses of Hardy field functions of order zero and of Fej ' er functions, i.e., tempered functions of order zero. We show that the convergence of the single average, via an invariant property, implies the convergence of the multiple one. We also provide examples of sublinear functions which are, in general, bad for convergence on arbitrary systems, but good for uniquely ergodic systems. The case where the fastest function is linear is addressed as well, and we provide, in all the cases, an explicit formula of the limit function.
引用
收藏
页码:1594 / 1618
页数:25
相关论文
共 50 条
  • [1] Pointwise convergence of some multiple ergodic averages
    Donoso, Sebastian
    Sun, Wenbo
    ADVANCES IN MATHEMATICS, 2018, 330 : 946 - 996
  • [2] Pointwise multiple averages for systems with two commuting transformations
    Donoso, Sebastian
    Sun, Wenbo
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2018, 38 : 2132 - 2157
  • [3] Random Sequences and Pointwise Convergence of Multiple Ergodic Averages
    Frantzikinakis, N.
    Lesigne, E.
    Wierdl, M.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2012, 61 (02) : 585 - 617
  • [4] Pointwise convergence of multiple ergodic averages and strictly ergodic models
    Wen Huang
    Song Shao
    Xiangdong Ye
    Journal d'Analyse Mathématique, 2019, 139 : 265 - 305
  • [5] POINTWISE CONVERGENCE OF MULTIPLE ERGODIC AVERAGES AND STRICTLY ERGODIC MODELS
    Huang, Wen
    Shao, Song
    Ye, Xiangdong
    JOURNAL D ANALYSE MATHEMATIQUE, 2019, 139 (01): : 265 - 305
  • [6] Complete characterizations of global optimality for problems involving the pointwise minimum of sublinear functions
    Glover, BM
    Ishizuka, Y
    Jeyakumar, V
    Tuan, HD
    SIAM JOURNAL ON OPTIMIZATION, 1996, 6 (02) : 362 - 372
  • [7] MULTIPLE ERGODIC AVERAGES FOR TEMPERED FUNCTIONS
    Koutsogiannis, Andreas
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (03) : 1177 - 1205
  • [8] POINTWISE CONVERGENCE FOR SUBSEQUENCES OF WEIGHTED AVERAGES
    LaVictoire, Patrick
    COLLOQUIUM MATHEMATICUM, 2011, 124 (02) : 157 - 168
  • [9] Pointwise convergence for cubic and polynomial multiple ergodic averages of non-commuting transformations
    Chu, Qing
    Frantzikinakis, Nikos
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2012, 32 : 877 - 897
  • [10] POINTWISE CONVERGENCE OF ERGODIC AVERAGES ALONG CUBES
    Assani, I.
    JOURNAL D ANALYSE MATHEMATIQUE, 2010, 110 : 241 - 269