Norm estimates for τ-pseudodifferential operators in Wiener amalgam and modulation spaces

被引:4
|
作者
Cordero, Elena [1 ]
D'Elia, Lorenza [1 ]
Trapasso, S. Ivan [2 ]
机构
[1] Univ Torino, Dipartimento Matemat, Via Carlo Alberto 10, I-10123 Turin, Italy
[2] Politecn Torino, Dipartimento Sci Matemat, Corso Duca Abruzzi 24, I-10129 Turin, Italy
关键词
tau-Wigner distribution; tau-Pseudodifferential operators; Wiener amalgam spaces; Modulation spaces; CONTINUITY PROPERTIES; BOUNDEDNESS; CALCULUS; ALGEBRA;
D O I
10.1016/j.jmaa.2018.10.090
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study continuity properties on modulation spaces for tau-pseudodifferential operators Op(tau) (a) with symbols a in Wiener amalgam spaces. We obtain boundedness results for tau is an element of(0, 1) whereas, in the end-points tau = 0 and tau = 1, the corresponding operators are in general unbounded. Furthermore, for tau is an element of(0, 1), we exhibit a function of tau which is an upper bound for the operator norm. The continuity properties of Op(tau) (a), for any tau is an element of[0, 1], with symbols a in modulation spaces are well known. Here we find an upper bound for the operator norm which does not depend on the parameter tau is an element of[0, 1], as expected. Key ingredients are uniform continuity estimates for tau-Wigner distributions. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:541 / 563
页数:23
相关论文
共 50 条
  • [41] Operators on Mixed-Norm Amalgam Spaces via Extrapolation
    Lu, Y.
    Zhou, J.
    Wang, S.
    [J]. JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2023, 58 (04): : 226 - 242
  • [42] Operators on Mixed-Norm Amalgam Spaces via Extrapolation
    Y. Lu
    J. Zhou#
    S. Wang
    [J]. Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2023, 58 : 226 - 242
  • [43] Wiener algebras of operators, and applications to pseudodifferential operators
    Rabinovich, VS
    Roch, S
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2004, 23 (03): : 437 - 482
  • [44] Characterizations of Some Properties on Weighted Modulation and Wiener Amalgam Spaces
    Guo, Weichao
    Chen, Jiecheng
    Fan, Dashan
    Zhao, Guoping
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 2019, 68 (03) : 451 - 482
  • [45] Strichartz estimates in Wiener amalgam spaces and applications to nonlinear wave equations
    Kim, Seongyeon
    Koh, Youngwoo
    Seo, Ihyeok
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 281 (08)
  • [46] Spectral Properties for Pseudodifferential Operators via Weighted Modulation Spaces
    Askari-Hemmat, A.
    Rahbani, Z.
    [J]. COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2012, 3 (03): : 261 - 272
  • [47] Bilinear multipliers of weighted Wiener amalgam spaces and variable exponent Wiener amalgam spaces
    Kulak, Oznur
    Gurkanli, Ahmet Turan
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [48] Bilinear multipliers of weighted Wiener amalgam spaces and variable exponent Wiener amalgam spaces
    Öznur Kulak
    Ahmet Turan Gürkanlı
    [J]. Journal of Inequalities and Applications, 2014
  • [49] Schrodinger-type propagators, pseudodifferential operators and modulation spaces
    Cordero, Elena
    Tabacco, Anita
    Wahlberg, Patrik
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2013, 88 : 375 - 395
  • [50] ON THE GRAND WIENER AMALGAM SPACES
    Gurkanli, Ahmet Turan
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (05) : 1647 - 1659