Thermal Boundary Conductance Across Heteroepitaxial ZnO/GaN Interfaces: Assessment of the Phonon Gas Model

被引:60
|
作者
Gaskins, John T. [1 ]
Kotsonis, George [2 ,13 ]
Giri, Ashutosh [1 ]
Ju, Shenghong [3 ,4 ]
Rohskopf, Andrew [5 ,14 ]
Wang, Yekan [6 ]
Bai, Tingyu [6 ]
Sachet, Edward [2 ]
Shelton, Christopher T. [2 ]
Liu, Zeyu [7 ]
Cheng, Zhe [5 ]
Foley, Brian M. [5 ,15 ]
Graham, Samuel [5 ,8 ]
Luo, Tengfei [7 ,9 ]
Henry, Asegun [5 ,8 ,10 ,14 ]
Goorsky, Mark S. [6 ]
Shiomi, Junichiro [3 ,4 ]
Maria, Jon-Paul [2 ,13 ]
Hopkins, Patrick E. [1 ,11 ,12 ]
机构
[1] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA
[2] North Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA
[3] Univ Tokyo, Dept Mech Engn, Bunkyo Ku, Tokyo 1138656, Japan
[4] Natl Inst Mat Sci, Ctr Mat Res Informat Integrat CMI2, Res & Serv Div Mat Data & Integrated Syst MaDIS, 1-2-1 Sengen, Tsukuba, Ibaraki 3050047, Japan
[5] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
[6] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[7] Univ Notre Dame, Dept Aerosp & Mech Engn, Notre Dame, IN 46556 USA
[8] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[9] Univ Notre Dame, Ctr Sustainable Energy Notre Dame ND Energy, Notre Dame, IN 46556 USA
[10] Georgia Inst Technol, Heat Lab, Atlanta, GA 30332 USA
[11] Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA
[12] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA
[13] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[14] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[15] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA
基金
日本科学技术振兴机构; 美国国家科学基金会;
关键词
Thermal boundary conductance; DMM; AGF; gallium nitride; zinc oxide phonon gas model; interfacial thermal transport; ELECTRONIC KAPITZA CONDUCTANCE; HEAT-CAPACITY; CONDUCTIVITY; SCATTERING; DIAMOND; ZNO; TRANSPORT; SOLIDS; OXIDE; POWER;
D O I
10.1021/acs.nanolett.8b02837
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We present experimental measurements of the thermal boundary conductance (TBC) from 78-500 K across isolated heteroepitaxially grown ZnO films on GaN substrates. This data provides an assessment of the underlying assumptions driving phonon gas-based models, such as the diffuse mismatch model (DMM), and atomistic Green's function (AGF) formalisms used to predict TBC. Our measurements, when compared to previous experimental data, suggest that TBC can be influenced by long wavelength, zone center modes in a material on one side of the interface as opposed to the "vibrational mismatch" concept assumed in the DMM; this disagreement is pronounced at high temperatures. At room temperature, we measure the ZnO/GaN TBC as 490[+150,-110] MW m(-2) K-1. The disagreement among the DMM and AGF, and the experimental data at elevated temperatures, suggests a non-negligible contribution from other types of modes that are not accounted for in the fundamental assumptions of these harmonic based formalisms, which may rely on anharmonicity. Given the high quality of these ZnO/GaN interfaces, these results provide an invaluable, critical, and quantitative assessment of the accuracy of assumptions in the current state of the art computational approaches used to predict phonon TBC across interfaces.
引用
收藏
页码:7469 / 7477
页数:9
相关论文
共 50 条
  • [21] A Critical Review of Thermal Boundary Conductance across Wide and Ultrawide Bandgap Semiconductor Interfaces
    Feng, Tianli
    Zhou, Hao
    Cheng, Zhe
    Larkin, Leighann Sarah
    Neupane, Mahesh R. R.
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (25) : 29655 - 29673
  • [22] Thermal boundary conductance across Co/Cu interfaces with spin-lattice interactions
    Ge, Yijun
    Zhou, Yanguang
    Fisher, Timothy S.
    JOURNAL OF APPLIED PHYSICS, 2021, 130 (23)
  • [23] A Review of Experimental and Computational Advances in Thermal Boundary Conductance and Nanoscale Thermal Transport across Solid Interfaces
    Giri, Ashutosh
    Hopkins, Patrick E.
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (08)
  • [24] Diffuse mismatch model of thermal boundary conductance using exact phonon dispersion
    Reddy, P
    Castelino, K
    Majumdar, A
    APPLIED PHYSICS LETTERS, 2005, 87 (21) : 1 - 3
  • [25] Interfacial Thermal Conductance across Room-Temperature-Bonded GaN/Diamond Interfaces for GaN-on-Diamond Devices
    Cheng, Zhe
    Mu, Fengwen
    Yates, Luke
    Suga, Tadatomo
    Graham, Samuel
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (07) : 8376 - 8384
  • [26] Role of the electron-phonon coupling on the thermal boundary conductance of metal/diamond interfaces with nanometric interlayers
    Blank, Maite
    Schneider, Gionata
    Ordonez-Miranda, Jose
    Weber, Ludger
    JOURNAL OF APPLIED PHYSICS, 2019, 126 (16)
  • [27] CONTRIBUTIONS OF ANHARMONIC PHONON INTERACTIONS TO THERMAL BOUNDARY CONDUCTANCE
    Hopkins, Patrick E.
    Duda, John C.
    Norris, Pamela M.
    PROCEEDINGS OF THE ASME/JSME 8TH THERMAL ENGINEERING JOINT CONFERENCE 2011, VOL 3, 2011, : 53 - +
  • [28] Thermal conductance and phonon transmissivity of metal-graphite interfaces
    Schmidt, Aaron J.
    Collins, Kimberlee C.
    Minnich, Austin J.
    Chen, Gang
    JOURNAL OF APPLIED PHYSICS, 2010, 107 (10)
  • [29] Thermal boundary conductance across solid-solid interfaces at high temperatures: A microscopic approach
    Zhong, Jinxin
    Xi, Qing
    Wang, Zhiguo
    Nakayama, Tsuneyoshi
    Li, Xiaobo
    Liu, Jun
    Zhou, Jun
    JOURNAL OF APPLIED PHYSICS, 2021, 129 (19)
  • [30] Influence of anisotropy on thermal boundary conductance at solid interfaces
    Hopkins, Patrick E.
    Beechem, Thomas
    Duda, John C.
    Hattar, Khalid
    Ihlefeld, Jon F.
    Rodriguez, Mark A.
    Piekos, Edward S.
    PHYSICAL REVIEW B, 2011, 84 (12)