Finite sample inference methods for dynamic energy demand models

被引:6
|
作者
Bernard, Jean-Thomas [3 ]
Idoudi, Nadhem [4 ]
Khalaf, Lynda [5 ,6 ]
Yelou, Clement [1 ,2 ]
机构
[1] Univ Laval, CREA, Stat Canada, Ottawa, ON K1A 0T6, Canada
[2] Grp Rech Econ Energie Environem Ressources Nat, Ottawa, ON K1A 0T6, Canada
[3] Univ Laval, GREEN, Ste Foy, PQ G1K 9P4, Canada
[4] Univ Laval, GREEN, Montreal, PQ H2Z 1A4, Canada
[5] Carleton Univ, Dept Econ, Ottawa, ON K1S 5B6, Canada
[6] Canada Res Chair Environm, CIREQ, Ottawa, ON K1S 5B6, Canada
关键词
D O I
10.1002/jae.996
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper considers finite sample motivated inference methods in dynamic energy demand models, in which case commonly used econometric methods remain asymptotic. We focus on structural stability, and on exact confidence set estimation of elasticities. We account for intractable and nuisance parameter dependant distributions through Monte Carlo test procedures. For long-run elasticities which depend on parameter ratios, we assess available asymptotic and exact methods with Fieller based alternatives. Fieller based and exact methods invert approximate and exact relevant test criteria (respectively) and may lead to unbounded set estimates. Our empirical results underscore the importance of using identification-robust inference methods. Copyright (c) 2007 John Wiley & Sons, Ltd.
引用
收藏
页码:1211 / 1226
页数:16
相关论文
共 50 条
  • [21] Inference for finite-sample trajectories in dynamic multi-state site-occupancy models using hidden Markov model smoothing
    Ian J. Fiske
    J. Andrew Royle
    Kevin Gross
    Environmental and Ecological Statistics, 2014, 21 : 313 - 328
  • [22] Inference for finite-sample trajectories in dynamic multi-state site-occupancy models using hidden Markov model smoothing
    Fiske, Ian J.
    Royle, J. Andrew
    Gross, Kevin
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2014, 21 (02) : 313 - 328
  • [23] SPECIFICATION ERRORS AND INFERENCE IN RECREATION DEMAND MODELS
    WETZSTEIN, ME
    MCNEELY, JG
    AMERICAN JOURNAL OF AGRICULTURAL ECONOMICS, 1980, 62 (04) : 798 - 800
  • [24] Integration and backfitting methods in additive models-finite sample properties and comparison
    Stefan Sperlich
    Oliver B. Linton
    Wolfgang Härdle
    Test, 1999, 8 : 419 - 458
  • [25] Properties of instrumental variables estimation in logit-based demand models Finite sample results
    Andrews, Rick L.
    Ebbes, Peter
    JOURNAL OF MODELLING IN MANAGEMENT, 2014, 9 (03) : 261 - 289
  • [26] Sample empirical likelihood methods for causal inference
    Huang, Jingyue
    Wu, Changbao
    Zeng, Leilei
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2025,
  • [27] Small sample inference for probabilistic index models
    Amorim, G.
    Thas, O.
    Vermeulen, K.
    Vansteelandt, S.
    De Neve, J.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 121 : 137 - 148
  • [28] Bayesian Inference in Spatial Sample Selection Models
    Dogan, Osman
    Taspinar, Suleyman
    OXFORD BULLETIN OF ECONOMICS AND STATISTICS, 2018, 80 (01) : 90 - 121
  • [29] Two sample inference in functional linear models
    Horvath, Lajos
    Kokoszka, Piotr
    Reimherr, Matthew
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2009, 37 (04): : 571 - 591
  • [30] Incidental parameters, initial conditions and sample size in statistical inference for dynamic panel data models
    Hsiao, Cheng
    Zhou, Qiankun
    JOURNAL OF ECONOMETRICS, 2018, 207 (01) : 114 - 128