Extremal generalized S-boxes

被引:0
|
作者
Satko, L [1 ]
Grosek, O
Nemoga, K
机构
[1] Slovak Univ Technol Bratislava, Fac Elect Engn & Informat Technol, Bratislava 81219, Slovakia
[2] Slovak Univ Technol Bratislava, Math Inst, Bratislava 81219, Slovakia
[3] Slovak Acad Sci, Inst Math, Bratislava 81473, Slovakia
关键词
quasigroups; linear structures; Boolean functions; perfect nonlinearity;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
It is well known that there does not exist a Boolean function f : Z(2)(m) --> Z(2)(n) satisfying both basic cryptologic criteria, balancedness and perfect nonlinearity. In [9] it was shown that, if we use as a domain quasigroup G instead of the group Z(2)(n), one can find functions which are at the same time balanced and perfectly nonlinear. Such functions have completely flat difference table. We continue in our previous work, but we turn our attention to the worst case when all lines of Cayley table of G define so called linear structure of f ([5]). We solve this problem in both directions: We describe all such bijections f : G --> Z(2)(n), for a given quasigroup \G\ = 2(n), and describe such quasigroups for a given function f.
引用
收藏
页码:85 / 99
页数:15
相关论文
共 50 条
  • [21] Highly nonlinear balanced S-boxes with improved bound on unrestricted and generalized nonlinearity
    Khoo, Khoongming
    Lim, Chu-Wee
    Gong, Guang
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2008, 19 (04) : 323 - 338
  • [22] Generalized Polynomial Decomposition for S-boxes with Application to Side-Channel Countermeasures
    Goudarzi, Dahmun
    Rivain, Matthieu
    Vergnaud, Damien
    Vivek, Srinivas
    CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS - CHES 2017, 2017, 10529 : 154 - 171
  • [23] Generation of 8 x 8 S-boxes using 4 x 4 optimal S-boxes
    Tiwari, Vikas
    Singh, Ajeet
    Tentu, Appala Naidu
    Saxena, Ashutosh
    INTERNATIONAL JOURNAL OF INFORMATION AND COMPUTER SECURITY, 2023, 20 (3-4) : 399 - 413
  • [24] PAIRS AND TRIPLETS OF DES S-BOXES
    DAVIES, D
    MURPHY, S
    JOURNAL OF CRYPTOLOGY, 1995, 8 (01) : 1 - 25
  • [25] A Note on Rotation Symmetric S-boxes
    Guangpu Gao
    Dongdai Lin
    Wenfen Liu
    Journal of Systems Science and Complexity, 2019, 32 : 1460 - 1472
  • [26] On the nonlinearity of S-boxes and linear codes
    Liu, Jian
    Mesnager, Sihem
    Chen, Lusheng
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2017, 9 (03): : 345 - 361
  • [27] A Note on Rotation Symmetric S-boxes
    GAO Guangpu
    LIN Dongdai
    LIU Wenfen
    JournalofSystemsScience&Complexity, 2019, 32 (05) : 1460 - 1472
  • [28] The design of S-boxes by simulated annealing
    John A. Clark
    Jeremy L. Jacob
    Susan Stepney
    New Generation Computing, 2005, 23 : 219 - 231
  • [29] NUMBER OF NONLINEAR REGULAR S-BOXES
    YOUSSEF, AM
    TAVARES, SE
    ELECTRONICS LETTERS, 1995, 31 (19) : 1643 - 1644
  • [30] The design of s-boxes by simulated annealing
    Clark, JA
    Jacob, JL
    Stepney, S
    NEW GENERATION COMPUTING, 2005, 23 (03) : 219 - 231