Opportunities for machine learning to accelerate halide-perovskite commercialization and scale-up

被引:15
|
作者
Kumar, Rishi E. [1 ,2 ]
Tiihonen, Armi [3 ]
Sun, Shijing [3 ]
Fenning, David P. [1 ,2 ]
Liu, Zhe [3 ,4 ]
Buonassisi, Tonio [3 ]
机构
[1] Univ Calif San Diego, Dept Nanoengn, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Mat Sci & Engn Program, La Jolla, CA 92093 USA
[3] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[4] Northwestern Polytech Univ, Sch Mat Sci & Engn, Xian Shaanxi, Xian 710072, Shaanxi, Peoples R China
关键词
SOLAR-CELLS; MATERIALS DISCOVERY; FEATURE-SELECTION; PARETO FRONT; OPTIMIZATION; DESIGN; STABILITY; KNOWLEDGE; STRENGTH;
D O I
10.1016/j.matt.2022.04.016
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
While halide perovskites attract significant academic attention, examples of industrial production at scale are still sparse. In this perspective, we review practical challenges hindering the commercialization of halide perovskites and discuss how machine-learning (ML) tools could help: (1) active-learning algorithms that blend institutional knowledge and human expertise could help stabilize and rapidly update baseline manufacturing processes, (2) computer -imaging methods with ML-based classification tools could help narrow the performance gap between large-and small-area devices, and (3) inference methods could help accelerate root-cause analysis by reconciling multiple data streams and simulations, focusing research efforts on the highest-probability areas. We conclude that to tackle many of these challenges, incremental-not radical-adaptations of existing ML methods are needed. We propose how industry -academic partnerships could help adapt "ready-now"ML tools to specific industry needs, further improve process control by revealing underlying mechanisms, and develop "gamechanger"discovery-oriented algorithms to better navigate the vast spaces of materials choices.
引用
收藏
页码:1353 / 1366
页数:14
相关论文
共 50 条
  • [21] Anticipated cell lines selection in bioprocess scale-up through machine learning on metabolomics dynamics
    Barberi, Gianmarco
    Benedetti, Antonio
    Diaz-Fernandez, Paloma
    Finka, Gary
    Bezzo, Fabrizio
    Barolo, Massimiliano
    Facco, Pierantonio
    IFAC PAPERSONLINE, 2021, 54 (03): : 85 - 90
  • [22] Machine Learning-Derived Correlations for Scale-Up and Technology Transfer of Primary Nucleation Kinetics
    Yerdelen, Stephanie
    Yang, Yihui
    Quon, Justin L.
    Papageorgiou, Charles D.
    Mitchell, Chris
    Houson, Ian
    Sefcik, Jan
    ter Horst, Joop H.
    Florence, Alastair J.
    Brown, Cameron J.
    CRYSTAL GROWTH & DESIGN, 2023, 23 (02) : 681 - 693
  • [23] Machine learning modelling of wet granulation scale-up using compressibility, compactibility and manufacturability parameters
    Millen, Nada
    Kovacevic, Aleksandar
    Khera, Lalit
    Djuris, Jelena
    Ibric, Svetlana
    HEMIJSKA INDUSTRIJA, 2019, 73 (03) : 155 - 168
  • [24] GaDei: On Scale-up Training As A Service For Deep Learning
    Zhang, Wei
    Feng, Minwei
    Zheng, Yunhui
    Ren, Yufei
    Wang, Yandong
    Liu, Ji
    Liu, Peng
    Xiang, Bing
    Zhang, Li
    Zhou, Bowen
    Wang, Fei
    2017 17TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2017, : 1195 - 1200
  • [25] Every Newborn: health-systems bottlenecks and strategies to accelerate scale-up in countries
    Dickson, Kim E.
    Simen-Kapeu, Aline
    Kinney, Mary V.
    Huicho, Luis
    Vesel, Linda
    Lackritz, Eve
    Johnson, Joseph de Graft
    von Xylander, Severin
    Rafique, Nuzhat
    Sylla, Mariame
    Mwansambo, Charles
    Daelmans, Bernadette
    Lawn, Joy E.
    LANCET, 2014, 384 (9941): : 438 - 454
  • [26] High-throughput computations and machine learning for halide perovskite discovery
    Yang, Jiaqi
    Mannodi-Kanakkithodi, Arun
    MRS BULLETIN, 2022, 47 (09) : 940 - 948
  • [27] High-throughput computations and machine learning for halide perovskite discovery
    Jiaqi Yang
    Arun Mannodi-Kanakkithodi
    MRS Bulletin, 2022, 47 : 940 - 948
  • [28] PERFORMANCE PREDICTION OF HALIDE DOUBLE PEROVSKITE MATERIALS BASED ON MACHINE LEARNING
    Zhang Q.
    Xu Z.
    Feng P.
    Tu J.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2024, 45 (04): : 107 - 115
  • [29] Transgenic Loblolly Pine and the Importance of Somatic Embryogenesis Scale-up Technologies for Future Commercialization.
    Chang, S.
    Vincent, L.
    Perry, A.
    Cook, M.
    Zhang, C.
    Rottmann, W.
    Nehra, N.
    Banner, W.
    Hinchee, M.
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2009, 45 : S26 - S26
  • [30] Machine Learning Modeling of Wet Granulation Scale-up Using Particle Size Distribution Characterization Parameters
    Millen, Nada
    Kovacevic, Aleksandar
    Djuris, Jelena
    Ibric, Svetlana
    JOURNAL OF PHARMACEUTICAL INNOVATION, 2020, 15 (04) : 535 - 546