SOME SERIES INVOLVING PRODUCTS BETWEEN THE HARMONIC NUMBERS AND THE FIBONACCI NUMBERS

被引:0
|
作者
Stewart, Sean M. [1 ]
机构
[1] 9 Tanang St, Bomaderry, NSW 2541, Australia
来源
FIBONACCI QUARTERLY | 2021年 / 59卷 / 03期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We find various ordinary generating functions for sequences involving products between the harmonic numbers and the Fibonacci numbers. These are then used to establish some classes of series associated with these products. Our approach is based on applying well-known ordinary generating functions for the harmonic numbers.
引用
收藏
页码:214 / 224
页数:11
相关论文
共 50 条
  • [21] Fibonacci numbers which are products of three Pell numbers and Pell numbers which are products of three Fibonacci numbers
    Rihane, Salah Eddine
    Akrour, Youssouf
    El Habibi, Abdelaziz
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2020, 26 (03): : 895 - 910
  • [22] Fibonacci numbers which are products of three Pell numbers and Pell numbers which are products of three Fibonacci numbers
    Salah Eddine Rihane
    Youssouf Akrour
    Abdelaziz El Habibi
    Boletín de la Sociedad Matemática Mexicana, 2020, 26 : 895 - 910
  • [23] Some Trigonometric Identities Involving Fibonacci and Lucas Numbers
    Bibak, Kh.
    Haghighi, M. H. Shirdareh
    JOURNAL OF INTEGER SEQUENCES, 2009, 12 (08)
  • [24] Some identities involving the powers of the generalized Fibonacci numbers
    Zhao, FZ
    Wang, TM
    FIBONACCI QUARTERLY, 2003, 41 (01): : 7 - 12
  • [25] Some identities involving the generalized Fibonacci and Lucas numbers
    Zhao, FZ
    Wang, TM
    ARS COMBINATORIA, 2004, 72 : 311 - 318
  • [26] SOME CONGRUENCES INVOLVING CATALAN, PELL AND FIBONACCI NUMBERS
    Koparal, S.
    Omur, N.
    MATHEMATICA MONTISNIGRI, 2020, 48 : 10 - 18
  • [27] On a congruence involving harmonic series and Bernoulli numbers
    Chern, Shane
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2022, 18 (08) : 1691 - 1712
  • [28] On the Norms of Some Special Matrices with the Harmonic Fibonacci Numbers
    Tuglu, Naim
    Kizilates, Can
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2015, 28 (03): : 497 - 501
  • [29] On the harmonic and hyperharmonic Fibonacci numbers
    Tuglu, Naim
    Kizilates, Can
    Kesim, Seyhun
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [30] Fibonacci numbers and harmonic quadruples
    Rieger, GJ
    FIBONACCI QUARTERLY, 1999, 37 (03): : 252 - 253