Two-dimensional systolic complexes satisfy property A

被引:2
|
作者
Hoda, Nima [1 ]
Osajda, Damian [2 ,3 ]
机构
[1] McGill Univ, Dept Math & Stat, Burnside Hall,Room 1005,805 Sherbrooke St West, Montreal, PQ H3A 0B9, Canada
[2] Uniwersytet Wroclawski, Inst Matemat, Pl Grunwaldzki 2-4, PL-50384 Wroclaw, Poland
[3] Polish Acad Sci, Inst Math, Sniadeckich 8, PL-00656 Warsaw, Poland
基金
加拿大自然科学与工程研究理事会;
关键词
Systolic complex; CAT(0) triangle complex; property A; boundary amenability; exact group; DISCRETE-GROUPS; HILBERT-SPACE; CONJECTURE; EXACTNESS; GRAPHS;
D O I
10.1142/S021819671850056X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that two-dimensional systolic complexes are quasi-isometric to quadric complexes with flat intervals. We use this fact along with the weight function of Brodzki, Campbell, Guentner, Niblo and Wright [J. Brodzki, S. J. Campbell, E. Guentner, G. A. Niblo and N. J. Wright, Property A and CAT(0) cube complexes, J. Funct. Anal. 256(5) (2009) 1408-1431] to prove that two-dimensional systolic complexes satisfy property A.
引用
收藏
页码:1247 / 1254
页数:8
相关论文
共 50 条
  • [31] Steady states of two-dimensional granular systems are unique, stable, and sometimes satisfy detailed balance
    Myhill, Alex D. C.
    Blumenfeld, Raphael
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (34)
  • [32] ON THE ONE-DIMENSIONAL AND TWO-DIMENSIONAL TODA-LATTICES AND THE PAINLEVE PROPERTY
    GIBBON, JD
    TABOR, M
    JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (08) : 1956 - 1960
  • [33] Stability property of the two-dimensional Keller-Segel model
    Raczynski, Andrzej
    ASYMPTOTIC ANALYSIS, 2009, 61 (01) : 35 - 59
  • [34] Synthesis Methods and Property Control of Two-Dimensional Magnetic Materials
    李明爽
    李惠敏
    刘松
    Chinese Physics Letters, 2024, 41 (02) : 117 - 126
  • [35] Synthesis Methods and Property Control of Two-Dimensional Magnetic Materials
    Li, Ming-Shuang
    Li, Hui-Min
    Liu, Song
    CHINESE PHYSICS LETTERS, 2024, 41 (02)
  • [36] A local property of polyhedral maps on compact two-dimensional manifolds
    Jendrol', S
    Voss, HJ
    DISCRETE MATHEMATICS, 2000, 212 (1-2) : 111 - 120
  • [37] Fine structure and property of two-dimensional energy storage materials
    Yi, Sha
    Gong, Yue
    Zheng, Qiang
    Zhang, Xiong
    Gu, Lin
    CHINESE SCIENCE BULLETIN-CHINESE, 2023, 68 (22): : 2911 - 2923
  • [38] Turnpike Property for Two-Dimensional Navier-Stokes Equations
    Zamorano, Sebastian
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2018, 20 (03) : 869 - 888
  • [40] Synthesis, crystal structure, and property of one- and two-dimensional complexes based on paradodecatungstate-B cluster
    Li, Bao
    Bi, Lihua
    Li, Wen
    Wu, Lixin
    JOURNAL OF SOLID STATE CHEMISTRY, 2008, 181 (12) : 3337 - 3343