Two-dimensional systolic complexes satisfy property A

被引:2
|
作者
Hoda, Nima [1 ]
Osajda, Damian [2 ,3 ]
机构
[1] McGill Univ, Dept Math & Stat, Burnside Hall,Room 1005,805 Sherbrooke St West, Montreal, PQ H3A 0B9, Canada
[2] Uniwersytet Wroclawski, Inst Matemat, Pl Grunwaldzki 2-4, PL-50384 Wroclaw, Poland
[3] Polish Acad Sci, Inst Math, Sniadeckich 8, PL-00656 Warsaw, Poland
基金
加拿大自然科学与工程研究理事会;
关键词
Systolic complex; CAT(0) triangle complex; property A; boundary amenability; exact group; DISCRETE-GROUPS; HILBERT-SPACE; CONJECTURE; EXACTNESS; GRAPHS;
D O I
10.1142/S021819671850056X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that two-dimensional systolic complexes are quasi-isometric to quadric complexes with flat intervals. We use this fact along with the weight function of Brodzki, Campbell, Guentner, Niblo and Wright [J. Brodzki, S. J. Campbell, E. Guentner, G. A. Niblo and N. J. Wright, Property A and CAT(0) cube complexes, J. Funct. Anal. 256(5) (2009) 1408-1431] to prove that two-dimensional systolic complexes satisfy property A.
引用
收藏
页码:1247 / 1254
页数:8
相关论文
共 50 条