Genomewide association analysis of salt tolerance in soybean [Glycine max (L.) Merr.]

被引:4
|
作者
Huang, Lei [1 ]
Zeng, Ailan [1 ]
Chen, Pengyin [1 ]
Wu, Chengjun [1 ]
Wang, Dechun [2 ]
Wen, Zixiang [2 ]
机构
[1] Univ Arkansas, Dept Crop Soil & Environm Sci, Fayetteville, AR 72701 USA
[2] Michigan State Univ, Dept Plant Soil & Microbial Sci, E Lansing, MI 48824 USA
关键词
association mapping; marker-assisted selection; quantitative trait loci; single-nucleotide polymorphism; IRON-DEFICIENCY CHLOROSIS; QUANTITATIVE TRAIT LOCI; QTL; STRATIFICATION; INHERITANCE; INFERENCE; GENOTYPES; MARKERS; PROTEIN; WILD;
D O I
10.1111/pbr.12623
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Salinity is a common abiotic stress causing soybean [Glycine max (L.) Merr.] yield loss worldwide. The use of tolerant cultivars is an effective and economic approach to coping with this stress. Towards this, research is needed to identify salt-tolerant germplasm and better understand the genetic and molecular basis of salt tolerance in soybean. The objectives of this study were to identify salt-tolerant genotypes, to search for single-nucleotide polymorphisms (SNPs) and QTLs associated with salt tolerance. A total of 192 diverse soybean lines and cultivars were screened for salt tolerance in the glasshouse based on visual leaf scorch scores after 15-18days of 120mM NaCl stress. These genotypes were further genotyped using the SoySNP50K iSelect BeadChip. Genomewide association mapping showed that 62 SNP markers representing six genomic regions on chromosomes (Chr.) 2, 3, 5, 6, 8 and 18, respectively, were significantly associated with salt tolerance (p < 0.001). A total of 52 SNP markers on Chr. 3 are mapped at or near the major salt tolerance QTL previously identified in S-100 (Lee etal., 2014). Three SNPs on Chr. 18 map near the salt tolerance QTL previously identified in Nannong1138-2 (Chen, Cui, Fu, Gai, & Yu, 2008). The other significant SNPs represent four putative minor QTLs for salt tolerance, newly identified in this study. The results above lay the foundation for fine mapping, cloning and molecular breeding for soybean salt tolerance.
引用
收藏
页码:714 / 720
页数:7
相关论文
共 50 条
  • [31] Molecular Characterization of Magnesium Chelatase in Soybean [Glycine max (L.) Merr.]
    Zhang, Dan
    Chang, Enjie
    Yu, Xiaoxia
    Chen, Yonghuan
    Yang, Qinshuai
    Cao, Yanting
    Li, Xiukun
    Wang, Yuhua
    Fu, Aigen
    Xu, Min
    FRONTIERS IN PLANT SCIENCE, 2018, 9
  • [32] Endophytic fungi of soybean (Glycine max (L.) Merr.) and their potential applications
    Abdelmagid, Ahmed
    Hou, Anfu
    Wijekoon, Champa
    CANADIAN JOURNAL OF PLANT SCIENCE, 2024, 104 (01) : 32 - 40
  • [33] Phytochemical constituents from the leaves of soybean [Glycine max (L.) merr.]
    Lee, Jin Hwan
    Baek, In-Youl
    Choung, Myoung-Gun
    Ha, Tae Joung
    Han, Won-Young
    Cho, Kye Man
    Ko, Jong-Min
    Jeong, Seong Hun
    Oh, Ki-Won
    Park, Keum-Yong
    Park, Ki Hun
    FOOD SCIENCE AND BIOTECHNOLOGY, 2008, 17 (03) : 578 - 586
  • [34] Evaluation of Soybean [Glycine max (L.) Merr.] F(1 )Hybrids
    Perez, Paola T.
    Cianzio, Silvia R.
    Palmer, Reid G.
    JOURNAL OF CROP IMPROVEMENT, 2009, 23 (01) : 1 - 18
  • [35] AFLP Analysis of Genetic Diversity in Indian Soybean [Glycine max (L.) Merr.] Varieties
    C. Tara Satyavathi
    K. V. Bhat
    C. Bharadwaj
    S. P. Tiwari
    V. K. Chaudhury
    Genetic Resources and Crop Evolution, 2006, 53 : 1069 - 1079
  • [36] Quantitative trait loci analysis for the developmental behavior of Soybean (Glycine max L. Merr.)
    Sun, DH
    Li, WB
    Zhang, ZC
    Chen, QS
    Ning, HL
    Qiu, LJ
    Sun, GL
    THEORETICAL AND APPLIED GENETICS, 2006, 112 (04) : 665 - 673
  • [37] Cloning and functional analysis of two GmDeg genes in soybean [Glycine max (L.) Merr.]
    Xing Kong
    Jingyao Zhang
    Deyue Yu
    Junyi Gai
    Shouping Yang
    Journal of Plant Biology, 2017, 60 : 48 - 56
  • [38] Cloning and functional analysis of two GmDeg genes in soybean [Glycine max (L.) Merr.]
    Kong, Xing
    Zhang, Jingyao
    Yu, Deyue
    Gai, Junyi
    Yang, Shouping
    JOURNAL OF PLANT BIOLOGY, 2017, 60 (01) : 48 - 56
  • [39] AFLP analysis of genetic diversity in Indian soybean [Glycine max (L.) Merr.] varieties
    Satyavathi, C. Tara
    Bhat, K. V.
    Bharadwaj, C.
    Tiwari, S. P.
    Chaudhury, V. K.
    GENETIC RESOURCES AND CROP EVOLUTION, 2006, 53 (05) : 1069 - 1079
  • [40] QTL Analysis of Shoot Ureide and Nitrogen Concentrations in Soybean [Glycine max (L.) Merr.]
    Hwang, Sadal
    King, C. Andy
    Davies, Marilynn K.
    Ray, Jeffery D.
    Cregan, Perry B.
    Purcell, Larry C.
    CROP SCIENCE, 2013, 53 (06) : 2421 - 2433