Analytical study of nonlinear water wave equations for their fractional solution structures

被引:7
|
作者
Zafar, Asim [1 ]
Inc, Mustafa [2 ,3 ,4 ]
Shakeel, Muhammad [1 ]
Mohsin, Muhammad [1 ]
机构
[1] COMSATS Univ, Dept Math, Vehari Campus, Islamabad, Pakistan
[2] Biruni Univ, Dept Comp Engn, Istanbul, Turkey
[3] Firat Univ, Sci Fac, Dept Math, TR-23119 Elazig, Turkey
[4] China Med Univ Taichung, Dept Med Res, Taichung, Taiwan
来源
MODERN PHYSICS LETTERS B | 2022年 / 36卷 / 14期
关键词
Zakharov-Kuznetsov-Burgers equation; Yu-Toda-Sasa-Fukuyama equation; wave solutions; GENERAL SOLITON-SOLUTIONS; DIRECT ALGEBRAIC-METHOD; DIFFERENTIAL-EQUATIONS; OPTICAL SOLITONS; EVOLUTION;
D O I
10.1142/S0217984922500713
中图分类号
O59 [应用物理学];
学科分类号
摘要
This paper examines the three-dimensional nonlinear time-fractional water wave equations for their analytical wave solutions. These are the equations of the names (3 + 1)-Zakharov-Kuznetsov-Burgers equation and (3+1)-Yu-Toda-Sasa-Fukuyama equation. The obtained wave solutions are in the form of kink, periodic and singular waves by utilizing the (G'/G(2))-expansion approach. The aforesaid solutions are verified and demonstrated graphically via symbolic soft computations.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Solitary wave solutions and traveling wave solutions for systems of time-fractional nonlinear wave equations via an analytical approach
    Thabet, Hayman
    Kendre, Subhash
    Peters, James
    Kaplan, Melike
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (03):
  • [32] Soliton solutions to a few fractional nonlinear evolution equations in shallow water wave dynamics
    Mirzazadeh, Mohammad
    Ekici, Mehmet
    Sonmezoglu, Abdullah
    Ortakaya, Sami
    Eslami, Mostafa
    Biswas, Anjan
    EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (05):
  • [33] Soliton solutions to a few fractional nonlinear evolution equations in shallow water wave dynamics
    Mohammad Mirzazadeh
    Mehmet Ekici
    Abdullah Sonmezoglu
    Sami Ortakaya
    Mostafa Eslami
    Anjan Biswas
    The European Physical Journal Plus, 131
  • [34] Analytical Solution of Nonlinear Diffusion Wave Model
    Mizumura, Kazumasa
    JOURNAL OF HYDROLOGIC ENGINEERING, 2012, 17 (07) : 782 - 789
  • [35] Initial value problem solution of nonlinear shallow water-wave equations
    Kanoglu, Utku
    Synolakis, Costas
    PHYSICAL REVIEW LETTERS, 2006, 97 (14)
  • [36] Novel optical solitons and other wave structures of solutions to the fractional order nonlinear Schrodinger equations
    Islam, Md. Tarikul
    Akter, Mst. Armina
    Gomez-Aguilar, J. F.
    Akbar, Md. Ali
    Perez-Careta, Eduardo
    OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (08)
  • [37] Inelastic soliton wave solutions with different geometrical structures to fractional order nonlinear evolution equations
    Adel, M.
    Baleanu, Dumitru
    Sadiya, Umme
    Arefin, Mohammad Asif
    Uddin, M. Hafiz
    Elamin, Mahjoub A.
    Osman, M. S.
    RESULTS IN PHYSICS, 2022, 38
  • [38] Novel optical solitons and other wave structures of solutions to the fractional order nonlinear Schrodinger equations
    Md. Tarikul Islam
    Mst. Armina Akter
    J. F. Gómez-Aguilar
    Md. Ali Akbar
    Eduardo Perez-Careta
    Optical and Quantum Electronics, 2022, 54
  • [39] Abundant Wave Accurate Analytical Solutions of the Fractional Nonlinear Hirota-Satsuma-Shallow Water Wave Equation
    Yue, Chen
    Lu, Dianchen
    Khater, Mostafa M. A.
    FLUIDS, 2021, 6 (07)
  • [40] Exploring soliton solutions in nonlinear spatiotemporal fractional quantum mechanics equations: an analytical study
    Ali, Rashid
    Zhang, Zhao
    Ahmad, Hijaz
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (05)