Carbon-Integrated Vanadium Oxide Hydrate as a High-Performance Cathode Material for Aqueous Zinc-Ion Batteries

被引:8
|
作者
Lewis, Courtney-Elyce M. [1 ,2 ]
Fernando, Joseph F. S. [1 ,2 ]
Siriwardena, Dumindu P. [1 ,2 ]
Firestein, Konstantin L. [1 ,2 ]
Zhang, Chao [1 ,2 ]
Golberg, Dmitri, V [1 ,2 ]
机构
[1] Queensland Univ Technol QUT, Fac Sci, Ctr Mat Sci, Brisbane, Qld 4000, Australia
[2] Queensland Univ Technol QUT, Fac Sci, Sch Chem & Phys, Brisbane, Qld 4000, Australia
基金
澳大利亚研究理事会;
关键词
electrochemistry; zinc-ion battery; cathode material; vanadium oxide hydrate; green technology; renewable energy sources include solar; wind; hydropower; NONAQUEOUS SOLVENTS; STORAGE; CAPACITY; ENERGY;
D O I
10.1021/acsaem.1c03517
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The hydration of bilayer vanadium oxides has become the focus of several recent studies toward increasing the interlayer spacing and improving their structural stability, which is favorable for the reversible (de)insertion of Zn2+ ions. However, there is limited understanding on the optimal level of H2O molecules to be incorporated within the vanadium oxide structure. Herein, we investigate the effects of the interlayer H2O content in a vanadium(IV,V) oxide-based cathode material toward the electrochemical performance of a zinc-ion battery (ZIB). A simple solvothermal synthetic route was employed to synthesize carbon-integrated hydrated vanadium oxides with varying H2O contents, CHVO (V5O12middot2.7H2O) and CHVOLW (V5O12middot0.4H2O). CHVO material displays a high capacity of 396 mA h g-1 at a specific current of 250 mA g-1 and an excellent rate capability (187 W h kg-1 at a high-power density of 4.5 kW kg-1). In contrast, CHVO-LW delivers a higher capacity of 582 mA h g-1 at 200 mA g-1 in the initial cycles, however, suffers a rapid capacity decay and cell failure in subsequent cycles. Electrochemical characterizations revealed that structural pillars, such as H2O molecules, can indeed provide significant structural stability, yet too many of them can block intercalation pathways leading to lower capacity. This study shows the importance of adjusting the hydration level to sustain a balance between the high capacity and long-term stability of hydrated vanadium oxide cathode-based ZIBs.
引用
下载
收藏
页码:4159 / 4169
页数:11
相关论文
共 50 条
  • [21] Carbon nanotubes intertwined porous vanadium oxide heterostructured microfibers as high-performance cathodes for aqueous zinc-ion batteries
    Wang, Menglian
    Nie, Kaiqi
    Wu, Haibo
    Lv, Xiaoxin
    Deng, Jiujun
    Ji, Hongbing
    APPLIED SURFACE SCIENCE, 2023, 612
  • [22] Zinc Vanadium Oxide Nanobelts as High-Performance Cathodes for Rechargeable Zinc-Ion Batteries
    Venkatesan, R.
    Bauri, Ranjit
    Mayuranathan, Kishore Kumar
    ENERGY & FUELS, 2022, 36 (14) : 7854 - 7864
  • [23] Metal-ion inserted vanadium oxide nanoribbons as high-performance cathodes for aqueous zinc-ion batteries
    Yu, Liangmin
    Yamauchi, Yusuke
    Wang, Jie
    Pang, Zhibin
    Ding, Bing
    Wang, Yanjian
    Xu, Li
    Zhou, Long
    Jiang, Xiaohui
    Yan, Xuefeng
    Hill, Jonathan P.
    CHEMICAL ENGINEERING JOURNAL, 2022, 446
  • [24] Mn-containing heteropolyvanadate nanoparticles as a high-performance cathode material for aqueous zinc-ion batteries
    Xiao, Haoran
    Li, Rong
    Zhu, Limin
    Chen, Xizhuo
    Xie, Lingling
    Han, Qing
    Qiu, Xuejing
    Yi, Lanhua
    Cao, Xiaoyu
    JOURNAL OF ENERGY STORAGE, 2024, 89
  • [25] Electrochemical Activation in Vanadium Oxide with Rich Oxygen Vacancies for High-Performance Aqueous Zinc-Ion Batteries
    Liang, Fangan
    Chen, Min
    Zhang, Shuchao
    Zou, Zhengguang
    Ge, Chuanqi
    Jia, Shengkun
    Le, Shangwang
    Yu, Fagang
    Nong, Jinxia
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (13) : 5117 - 5128
  • [26] K+-regulated vanadium oxide heterostructure enables high-performance aqueous zinc-ion batteries
    Li, Haibing
    Zhu, Liyun
    Fan, Weijun
    Xiao, Yi
    Wu, Jiadong
    Mi, Hongyu
    Zhang, Fumin
    Yang, Linyu
    CrystEngComm, 2024, 27 (02) : 191 - 201
  • [27] Construction of vanadium oxide cathode material with high performance and stability and its application in aqueous zinc-ion battery
    Liu, Junqi
    Hu, Hao
    Yuan, Tongtong
    Zhao, Pengbo
    Liu, Hangchen
    Cheng, Haoyan
    APPLIED SURFACE SCIENCE, 2024, 648
  • [28] Vanadium Pentoxide Nanofibers/Carbon Nanotubes Hybrid Film for High-Performance Aqueous Zinc-Ion Batteries
    Liu, Xianyu
    Ma, Liwen
    Du, Yehong
    Lu, Qiongqiong
    Yang, Aikai
    Wang, Xinyu
    NANOMATERIALS, 2021, 11 (04)
  • [30] Large-area hydrated vanadium oxide/carbon nanotube composite films for high-performance aqueous zinc-ion batteries
    Hongmei Cao
    Shenzhen Deng
    Zhiwei Tie
    Jinlei Tian
    Lili Liu
    Zhiqiang Niu
    Science China Chemistry, 2022, 65 : 1725 - 1732