Truncated conformal space approach for 2D Landau-Ginzburg theories

被引:27
|
作者
Coser, A. [1 ,2 ]
Beria, M. [1 ,2 ]
Brandino, G. P. [3 ]
Konik, R. M. [4 ]
Mussardo, G. [1 ,2 ,5 ]
机构
[1] Scuola Int Super Studi Avanzati, SISSA, I-34136 Trieste, Italy
[2] Ist Nazl Fis Nucl, Sez Trieste, I-34136 Trieste, Italy
[3] Univ Amsterdam, Inst Theoret Phys, NL-1090 GL Amsterdam, Netherlands
[4] Brookhaven Natl Lab, CMPMS Dept Bldg 734, Upton, NY 11973 USA
[5] Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy
基金
美国国家科学基金会;
关键词
conformal field theory (theory); other numerical approaches; quantum phase transitions (theory); QUANTUM-FIELD-THEORY; SINE-GORDON MODEL; ISING-MODEL; QUANTIZATION; DIMENSIONS; EQUATION; STATES;
D O I
10.1088/1742-5468/2014/12/P12010
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study the spectrum of Landau-Ginzburg theories in 1 + 1 dimensions using the truncated conformal space approach employing a compactified boson. We study these theories both in their broken and unbroken phases. We first demonstrate that we can reproduce the expected spectrum of a Phi(2) theory (i.e. a free massive boson) in this framework. We then turn to Phi(4) in its unbroken phase and compare our numerical results with the predictions of two-loop perturbation theory, finding excellent agreement. We then analyze the broken phase of Phi(4) where kink excitations together with their bound states are present. We confirm the semiclassical predictions for this model on the number of stable kink-antikink bound states. We also test the semiclassics in the double well phase of Phi(6) Landau-Ginzburg theory, again finding agreement.
引用
收藏
页数:37
相关论文
共 50 条
  • [31] Landau-Ginzburg/conformal field theory correspondence for xd and module tensor categories
    Camacho, Ana Ros
    Wasserman, Thomas A.
    JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (12)
  • [32] STABILITY ANALYSIS FOR THE QUARTIC LANDAU-GINZBURG MODEL .2
    INFELD, E
    ROWLANDS, G
    WINTERNITZ, P
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1991, 3 (23) : 4187 - 4193
  • [33] Mahler measure of 3D Landau-Ginzburg potentials
    Fei, Jiarui
    FORUM MATHEMATICUM, 2021, 33 (05) : 1369 - 1401
  • [34] D-brane categories for orientifolds - the Landau-Ginzburg case
    Hori, Kentaro
    Walcher, Johannes
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (04):
  • [35] (0,2) Landau-Ginzburg models and residues
    Melnikov, Ilarion V.
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (09):
  • [36] ON THE LANDAU-GINZBURG DESCRIPTION OF N = 2 MINIMAL MODELS
    WITTEN, E
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1994, 9 (27): : 4783 - 4800
  • [37] DUALITY SYMMETRIES IN N=2 LANDAU-GINZBURG MODELS
    LERCHE, W
    LUST, D
    WARNER, NP
    PHYSICS LETTERS B, 1989, 231 (04) : 417 - 424
  • [38] Landau-Ginzburg approach to topological excitations in Josephson junction arrays
    Sakhi, S
    EUROPHYSICS LETTERS, 2006, 73 (02): : 267 - 270
  • [39] D-branes in Landau-Ginzburg models and algebraic geometry
    Kapustin, A
    Li, Y
    JOURNAL OF HIGH ENERGY PHYSICS, 2003, (12):
  • [40] D-Brane Central Charge and Landau-Ginzburg Orbifolds
    Knapp, Johanna
    Romo, Mauricio
    Scheidegger, Emanuel
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 384 (01) : 609 - 697