Synchronization of intermittent behavior in ensembles of multistable dynamical systems

被引:25
|
作者
Sevilla-Escoboza, R. [1 ]
Buldu, J. M. [2 ,3 ]
Pisarchik, A. N. [4 ,5 ]
Boccaletti, S. [6 ,7 ]
Gutierrez, R. [8 ]
机构
[1] Univ Guadalajara, Ctr Univ Lagos, Enrique Diaz Leon, Lagos De Moreno 47460, Jalisco, Mexico
[2] Tech Univ Madrid, Ctr Biomed Technol, Lab Biol Networks, Madrid 28223, Spain
[3] Univ Rey Juan Carlos, Comp Syst Grp, Madrid 28933, Spain
[4] Tech Univ Madrid, Ctr Biomed Technol, Computat Syst Biol Grp, Madrid 28223, Spain
[5] Ctr Invest Opt, Leon 37150, Guanajuato, Mexico
[6] CNR, Ist Sistemi Complessi, I-50019 Sesto Fiorentino, Italy
[7] Italian Embassy Israel, IL-68125 Tel Aviv, Israel
[8] Weizmann Inst Sci, Dept Chem Phys, IL-76100 Rehovot, Israel
关键词
BIFURCATIONS;
D O I
10.1103/PhysRevE.91.032902
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We propose a methodology to analyze synchronization in an ensemble of diffusively coupled multistable systems. First, we study how two bidirectionally coupled multistable oscillators synchronize and demonstrate the high complexity of the basins of attraction of coexisting synchronous states. Then, we propose the use of the master stability function (MSF) for multistable systems to describe synchronizability, even during intermittent behavior, of a network of multistable oscillators, regardless of both the number of coupled oscillators and the interaction structure. In particular, we show that a network of multistable elements is synchronizable for a given range of topology spectra and coupling strengths, irrespective of specific attractor dynamics to which different oscillators are locked, and even in the presence of intermittency. Finally, we experimentally demonstrate the feasibility and robustness of the MSF approach with a network of multistable electronic circuits.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Controllability of ensembles of linear dynamical systems
    Schoenlein, Michael
    Helmke, Uwe
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2016, 125 : 3 - 14
  • [22] On the behavior of bidirectionally coupled multistable systems
    Ruiz-Silva, A.
    Cassal-Quiroga, B. B.
    Huerta-Cuellar, G.
    Gilardi-Velazquez, H. E.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2022, 231 (03): : 369 - 379
  • [23] Optimal control of ensembles of dynamical systems
    Scagliotti, Alessandro
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2023, 29
  • [24] On the behavior of bidirectionally coupled multistable systems
    A. Ruiz-Silva
    B. B. Cassal-Quiroga
    G. Huerta-Cuellar
    H. E. Gilardi-Velázquez
    The European Physical Journal Special Topics, 2022, 231 : 369 - 379
  • [25] Synchronization in Complex Delayed Dynamical Networks with Intermittent Coupling
    Zhang, Hua
    Xiang, Lan
    Wu, Quanjun
    Zhou, Jin
    2011 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, 2011, : 1985 - +
  • [26] On the Theory of Synchronization of Dynamical Systems
    Shchennikov, A. V.
    Shchennikov, V. N.
    DIFFERENTIAL EQUATIONS, 2018, 54 (12) : 1674 - 1678
  • [27] Discontinuous dynamical systems and synchronization
    Luo, Albert C. J.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2019, 228 (06): : 1383 - 1384
  • [28] Concepts of synchronization in dynamical systems
    Yang, XS
    PHYSICS LETTERS A, 1999, 260 (05) : 340 - 344
  • [29] Synchronization of reconstructed dynamical systems
    Voss, HU
    CHAOS, 2003, 13 (01) : 327 - 334
  • [30] Discontinuous dynamical systems and synchronization
    Albert C. J. Luo
    The European Physical Journal Special Topics, 2019, 228 : 1383 - 1384