Synchronization of intermittent behavior in ensembles of multistable dynamical systems

被引:25
|
作者
Sevilla-Escoboza, R. [1 ]
Buldu, J. M. [2 ,3 ]
Pisarchik, A. N. [4 ,5 ]
Boccaletti, S. [6 ,7 ]
Gutierrez, R. [8 ]
机构
[1] Univ Guadalajara, Ctr Univ Lagos, Enrique Diaz Leon, Lagos De Moreno 47460, Jalisco, Mexico
[2] Tech Univ Madrid, Ctr Biomed Technol, Lab Biol Networks, Madrid 28223, Spain
[3] Univ Rey Juan Carlos, Comp Syst Grp, Madrid 28933, Spain
[4] Tech Univ Madrid, Ctr Biomed Technol, Computat Syst Biol Grp, Madrid 28223, Spain
[5] Ctr Invest Opt, Leon 37150, Guanajuato, Mexico
[6] CNR, Ist Sistemi Complessi, I-50019 Sesto Fiorentino, Italy
[7] Italian Embassy Israel, IL-68125 Tel Aviv, Israel
[8] Weizmann Inst Sci, Dept Chem Phys, IL-76100 Rehovot, Israel
关键词
BIFURCATIONS;
D O I
10.1103/PhysRevE.91.032902
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We propose a methodology to analyze synchronization in an ensemble of diffusively coupled multistable systems. First, we study how two bidirectionally coupled multistable oscillators synchronize and demonstrate the high complexity of the basins of attraction of coexisting synchronous states. Then, we propose the use of the master stability function (MSF) for multistable systems to describe synchronizability, even during intermittent behavior, of a network of multistable oscillators, regardless of both the number of coupled oscillators and the interaction structure. In particular, we show that a network of multistable elements is synchronizable for a given range of topology spectra and coupling strengths, irrespective of specific attractor dynamics to which different oscillators are locked, and even in the presence of intermittency. Finally, we experimentally demonstrate the feasibility and robustness of the MSF approach with a network of multistable electronic circuits.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Synchronization of multistable systems
    Pisarchik, A. N.
    Jaimes-Reategui, R.
    Garcia-Lopez, J. H.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (06): : 1801 - 1819
  • [2] Robust Synchronization for Multistable Systems
    Ahmed, Hafiz
    Ushirobira, Rosane
    Efimov, Denis
    Perruquetti, Wilfrid
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (06) : 1625 - 1630
  • [3] Dynamical control in multistable systems
    E. N. Egorov
    A. A. Koronovskii
    Technical Physics Letters, 2004, 30 : 186 - 189
  • [4] Dynamical control in multistable systems
    Egorov, EN
    Koronovskii, AA
    TECHNICAL PHYSICS LETTERS, 2004, 30 (03) : 186 - 189
  • [5] On conditions of robust synchronization for multistable systems
    Ahmed, Hafiz
    Ushirobira, Rosane
    Efimov, Denis
    Perruquetti, Wilfrid
    2015 EUROPEAN CONTROL CONFERENCE (ECC), 2015, : 181 - 185
  • [6] Multistable chaotic dynamical systems and philosophy
    Aboites, Vicente
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (06): : 1821 - 1824
  • [7] Symmetric synchronization behavior of multistable chaotic systems and circuits in attractive and repulsive couplings
    Wang, Zhen
    Parastesh, Fatemeh
    Tian, Huaigu
    Jafari, Sajad
    INTEGRATION-THE VLSI JOURNAL, 2023, 89 : 37 - 46
  • [8] Design of multistable systems via partial synchronization
    Mohammad Ali Khan
    Mayurakshi Nag
    Swarup Poria
    Pramana, 2017, 89
  • [9] Synchronization in Coupled Multistable Systems with Hidden Attractors
    Gokul, P. M.
    Kapitaniak, Tomasz
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [10] Design of multistable systems via partial synchronization
    Khan, Mohammad Ali
    Nag, Mayurakshi
    Poria, Swarup
    PRAMANA-JOURNAL OF PHYSICS, 2017, 89 (02):