Dynamic stabilization of filamentation instability

被引:11
|
作者
Kawata, S. [1 ]
Gu, Y. J. [2 ]
Li, X. F. [1 ,3 ]
Karino, T. [1 ]
Katoh, H. [1 ]
Limpouch, J. [4 ]
Klimo, O. [4 ]
Margarone, D. [2 ]
Yu, Q. [2 ]
Kong, Q. [3 ]
Weber, S. [2 ]
Bulanov, S. [5 ]
Andreev, A. [6 ]
机构
[1] Utsunomiya Univ, Grad Sch Engn, Utsunomiya, Tochigi 3218585, Japan
[2] ELI Beamlines, Inst Phys, Prague 18221, Czech Republic
[3] Fudan Univ, Inst Modern Phys, Shanghai, Peoples R China
[4] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Prague 11519, Czech Republic
[5] Japan Atom Energy Agcy, Kansai Photon Sci Inst, Kyoto 6190215, Japan
[6] ELI ALPS, Szeged, Hungary
关键词
ION-BEAMS;
D O I
10.1063/1.5017517
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The paper presents a study on dynamic stabilization of filamentation instability driven by an electron beam introduced into a plasma. The results presented in the paper demonstrate that the filamentation instability is successfully stabilized by the dynamic stabilization mechanism, in which the electron beam axis oscillates. The dynamic stabilization mechanism for plasma instability was proposed in the paper [Kawata, Phys. Plasmas 19, 024503 (2012)]. In general, instabilities emerge from the perturbations of the physical quantity. Normally the perturbation phase is unknown so that the instability growth rate is discussed. However, if the perturbation phase is known, the instability growth can be controlled by a superimposition of perturbations imposed actively: if the perturbation is introduced by, for example, a driving beam axis oscillation or so, the perturbation phase can be controlled and the instability growth is mitigated by the superimposition of the growing perturbations. Published by AIP Publishing.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Dynamic Stabilization for Degenerative Spondylolisthesis and Lumbar Spinal Instability
    Ohtonari, Tatsuya
    Nishihara, Nobuharu
    Suwa, Katsuyasu
    Ota, Taisei
    Koyama, Tsunemaro
    NEUROLOGIA MEDICO-CHIRURGICA, 2014, 54 (09) : 698 - 706
  • [22] Dynamic stabilization of classical Rayleigh-Taylor instability
    Piriz, A. R.
    Piriz, S. A.
    Tahir, N. A.
    PHYSICS OF PLASMAS, 2011, 18 (09)
  • [23] Quantum kinetic theory of the filamentation instability
    Bret, A.
    Haas, F.
    PHYSICS OF PLASMAS, 2011, 18 (07)
  • [24] ELECTROMAGNETIC FILAMENTATION INSTABILITY OF A WHISTLER WAVE
    SHARMA, OP
    PATEL, VL
    PHYSICS OF FLUIDS, 1986, 29 (10) : 3486 - 3488
  • [25] TEMPORAL GROWTH OF FILAMENTATION INSTABILITY IN PLASMAS
    SODHA, MS
    SHARMA, JK
    SHARMA, RP
    KAUSHIK, SC
    JOURNAL OF APPLIED PHYSICS, 1978, 49 (02) : 599 - 602
  • [26] CURRENT FILAMENTATION INSTABILITY IN TURBULENT PLASMAS
    BISKAMP, D
    HORTON, W
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1973, 18 (10): : 1313 - 1313
  • [27] Collisionless thermal filamentation instability in plasmas
    Bouzid, F
    Bendib, A
    INTERNATIONAL CONFERENCE ON PHENOMENA IN IONIZED GASES, VOL V, PROCEEDINGS, 1999, : 71 - 72
  • [28] Experimental Study of Current Filamentation Instability
    Allen, B.
    Yakimenko, V.
    Babzien, M.
    Fedurin, M.
    Kusche, K.
    Muggli, P.
    PHYSICAL REVIEW LETTERS, 2012, 109 (18)
  • [29] On the filamentation instability in degenerate relativistic plasmas
    Goshadze, R. M.
    Berezhiani, V., I
    Osmanov, Z.
    PHYSICS LETTERS A, 2019, 383 (10) : 1027 - 1030
  • [30] Filamentation instability in a quantum magnetized plasma
    Bret, A.
    PHYSICS OF PLASMAS, 2008, 15 (02)