Ginsenoside Rb1 Attenuates Triptolide-Induced Cytotoxicity in HL-7702 Cells via the Activation of Keap1/Nrf2/ARE Pathway

被引:21
|
作者
Peng, Hulinyue [1 ]
You, Longtai [1 ]
Yang, Chunjing [2 ]
Wang, Kaixin [1 ]
Liu, Manting [1 ]
Yin, Dongge [1 ]
Xu, Yuchen [1 ]
Dong, Xiaoxv [1 ]
Yin, Xingbin [1 ]
Ni, Jian [1 ]
机构
[1] Beijing Univ Chinese Med, Sch Chinese Mat Med, Beijing, Peoples R China
[2] Capital Univ Med Sci, Beijing Shijitan Hosp, Dept Pharm, Beijing, Peoples R China
关键词
ginsenoside Rb1; triptolide; HL-7702; cells; Keap1; Nrf2; ARE pathway; apoptosis; cytotoxicity; APOPTOSIS; INJURY; MODEL; HEPATOTOXICITY; INHIBITION; EXPRESSION; PROTECTION; RATS; ROS;
D O I
10.3389/fphar.2021.723784
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Triptolide (TP) is the major bioactive compound extracted from Tripterygium wilfordii Hook F. It exerts anti-inflammatory, antirheumatic, antineoplastic, and neuroprotective effects. However, the severe hepatotoxicity induced by TP limits its clinical application. Ginsenoside Rb1 has been reported to possess potential hepatoprotective effects, but its mechanism has not been fully investigated. This study was aimed at investigating the effect of ginsenoside Rb1 against TP-induced cytotoxicity in HL-7702 cells, as well as the underlying mechanism. The results revealed that ginsenoside Rb1 effectively reversed TP-induced cytotoxicity in HL-7702 cells. Apoptosis induced by TP was suppressed by ginsenoside Rb1 via inhibition of death receptor-mediated apoptotic pathway and mitochondrial-dependent apoptotic pathway. Pretreatment with ginsenoside Rb1 significantly reduced Bax/Bcl-2 ratio and down-regulated the expression of Fas, cleaved poly ADP-ribose polymerase (PARP), cleaved caspase-3, and -9. Furthermore, ginsenoside Rb1 reversed TP-induced cell cycle arrest in HL-7702 cells at S and G2/M phase, via upregulation of the expressions of cyclin-dependent kinase 2 (CDK2), cyclin E, cyclin A, and downregulation of the expressions of p53, p21, and p-p53. Ginsenoside Rb1 increased glutathione (GSH) and superoxide dismutase (SOD) levels, but decreased the reactive oxygen species (ROS) and malondialdehyde (MDA) levels. Pretreatment with ginsenoside Rb1 enhanced the expression levels of nuclear factor-erythroid 2-related factor 2 (Nrf2), total Nrf2, NAD(P)H: quinone oxidoreductases-1 (NQO-1), heme oxygenase-1 (HO-1), and Kelch-like ECH-associated protein 1 (Keap1)/Nrf2 complex. Therefore, ginsenoside Rb1 effectively alleviates TP-induced cytotoxicity in HL-7702 cells through activation of the Keap1/Nrf2/ARE antioxidant pathway.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Activation of the Keap1/Nrf2 stress response pathway in autophagic vacuolar myopathies
    Steve Duleh
    Xianhong Wang
    Allison Komirenko
    Marta Margeta
    Acta Neuropathologica Communications, 4
  • [32] Ginsenoside Rb1 attenuates intestinal ischemia/reperfusion-induced inflammation and oxidative stress via activation of the PI3K/Akt/Nrf2 signaling pathway
    Chen, Sufang
    Li, Xiang
    Wang, Yanling
    Mu, Panwei
    Chen, Chaojin
    Huang, Pinjie
    Liu, Dezhao
    MOLECULAR MEDICINE REPORTS, 2019, 19 (05) : 3633 - 3641
  • [33] Metformin attenuates cardiac remodeling in mice through the Nrf2/Keap1 signaling pathway
    Du, Jingxia
    Zhu, Mengxi
    Li, Hongchao
    Liang, Gaofeng
    Li, Yan
    Feng, Shuying
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2020, 20 (02) : 838 - 845
  • [34] Nephroprotective Potential of Rhamnazin Against Cadmium-Induced Kidney Damages via Activation of Nrf2/Keap1 Pathway
    Anjum, Mahnoor
    Ehsan, Nazia
    Tahir, Arfa
    Batool, Moazama
    Hamdi, Hamida
    Ijaz, Muhammad Umar
    NATURAL PRODUCT COMMUNICATIONS, 2025, 20 (01)
  • [35] Catalpol Protects ARPE-19 Cells against Oxidative Stress via Activation of the Keap1/Nrf2/ARE Pathway
    You, Longtai
    Peng, Hulinyue
    Liu, Jing
    Cai, Mengru
    Wu, Huimin
    Zhang, Zhiqin
    Bai, Jie
    Yao, Yu
    Dong, Xiaoxv
    Yin, Xingbin
    Ni, Jian
    CELLS, 2021, 10 (10)
  • [36] Ginsenoside Rb1 Protects the Brain from Damage Induced by Epileptic Seizure via Nrf2/ARE Signaling
    Shi, Yunbo
    Miao, Wang
    Teng, Junfang
    Zhang, Lingli
    CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 2018, 45 (01) : 212 - 225
  • [37] Role of growth hormone in maturation and activation of dendritic cells via miR-200a and the Keap1/Nrf2 pathway
    Liu, Qiu-Liang
    Zhang, Jiao
    Liu, Xin
    Gao, Jing-Yao
    CELL PROLIFERATION, 2015, 48 (05) : 573 - 581
  • [38] Tethering of Nrf2 to Keap1 prevents Nrf2 degradation by the ubiquitin proteasome pathway
    Sekhar, K
    Yan, X
    Freeman, M
    FREE RADICAL BIOLOGY AND MEDICINE, 2002, 33 : S350 - S351
  • [39] Edaravone dexborneol attenuates oxidative stress in experimental subarachnoid hemorrhage via Keap1/Nrf2 signaling pathway
    Zhu, Kunyuan
    Bi, Shijun
    Zhu, Zechao
    Zhang, Wenxu
    Yang, Xinyu
    Li, Jiashuo
    Liang, Guobiao
    Yu, Chunyong
    Pan, Pengyu
    FRONTIERS IN PHARMACOLOGY, 2024, 15
  • [40] Nrf2 activation through the inhibition of Keap1–Nrf2 protein–protein interaction
    Sumi Lee
    Longqin Hu
    Medicinal Chemistry Research, 2020, 29 : 846 - 867