Clifford semirings and generalized Clifford semirings

被引:26
|
作者
Sen, MK
Maity, SK
Shum, KP
机构
[1] Univ Calcutta, Dept Pure Math, Kolkata 700019, W Bengal, India
[2] Chinese Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2005年 / 9卷 / 03期
关键词
completely regular semiring; Clifford semiring; generalized Clifford semiring; skew-ring; b-lattice;
D O I
10.11650/twjm/1500407851
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well known that a semigroup S is a Clifford semigroup if and only if S is a strong semilattice of groups. In this paper, we extend this important result from semigroups to semirings by showing that a semiring S is a Clifford semiring if and only if S is a strong distributive lattice of skew-rings. Also, as a further generalization, we prove that a semiring S is a genneralized Clifford semiring if and only if S is a strong b-lattice of skew-rings. Some results which have been recently obtained in the literature [2] are strengthened and extended.
引用
收藏
页码:433 / 444
页数:12
相关论文
共 50 条
  • [41] Analysis on generalized Clifford algebras
    Orelma, H.
    [J]. VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2023, 27 (01): : 7 - 22
  • [42] GENERALIZED EVEN CLIFFORD ALGEBRAS
    SELIGMAN, GB
    [J]. JOURNAL OF ALGEBRA, 1983, 82 (02) : 398 - 458
  • [43] ON A GENERALIZED CLIFFORD ALGEBRA (2)
    MORRIS, AO
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 1968, 19 (75): : 289 - &
  • [44] BASIC SEMIRINGS
    Chajda, Ivan
    Laenger, Helmut
    [J]. MATHEMATICA SLOVACA, 2019, 69 (03) : 533 - 540
  • [45] Structure of Semirings
    Vasanthi, T.
    Monikarchana, Y.
    Manjula, K.
    [J]. SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2011, 35 (01) : 149 - 156
  • [46] ARMENDARIZ AND QUASI-ARMENDARIZ SEMIRINGS AND PS SEMIRINGS
    Gupta, Vishnu
    Kumar, Pramod
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2011, 4 (01) : 81 - 94
  • [47] Positivstellensatze for semirings
    Schmuedgen, Konrad
    Schoetz, Matthias
    [J]. MATHEMATISCHE ANNALEN, 2024, 389 (01) : 947 - 985
  • [48] Integration in semirings
    Chajda, Ivan
    Laenger, Helmut
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (12)
  • [49] Decompositions in Semirings
    Ts. Ch.-D. Batueva
    M. V. Schwidefsky
    [J]. Siberian Mathematical Journal, 2023, 64 : 836 - 846
  • [50] On Neutrosophic Γ-Semirings
    Bhargavi, Yella
    Rezaei, Akbar
    [J]. Neutrosophic Sets and Systems, 2021, 47 : 338 - 353