A Prony Approximation of Koopman Mode Decomposition

被引:0
|
作者
Susuki, Yoshihiko [1 ,2 ]
Mezic, Igor [3 ]
机构
[1] Kyoto Univ, Dept Elect Engn, Nishikyo Ku, Kyoto 6158510, Japan
[2] JST, CREST, 4-1-8 Honcho, Kawaguchi, Saitama 3320012, Japan
[3] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93116 USA
关键词
SPECTRAL PROPERTIES; SYSTEMS; FLOWS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Koopman Mode Decomposition (KMD) is an emerging methodology to investigate a nonlinear spatiotemporal evolution via the point spectrum of the so-called Koopman operator defined for arbitrary nonlinear dynamical systems. Prony analysis is widely used in applications and is a methodology to reconstruct a sparse sum of exponentials from finite sampled data. In this paper, we show that a vector version of the Prony analysis provides a finite approximation of the KMD. This leads to an alternative algorithm for computing the Koopman modes and eigenvalues directly from data that is especially suitable to data with small-spatial and large-temporal snapshots. The algorithm is demonstrated by applying it to data on physical power flows sampled from the 2006 system disturbance of the UCTE interconnected grid.
引用
收藏
页码:7022 / 7027
页数:6
相关论文
共 50 条
  • [31] Decomposition theorems for Koopman operators
    Ding, J
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (06) : 1011 - 1018
  • [32] Decomposition theorems for Koopman operators
    Ding, Jiu
    Nonlinear Analysis, Theory, Methods and Applications, 1997, 28 (06): : 1011 - 1018
  • [33] Extended dynamic mode decomposition with dictionary learning: A data-driven adaptive spectral decomposition of the Koopman operator
    Li, Qianxiao
    Dietrich, Felix
    Bollt, Erik M.
    Kevrekidis, Ioannis G.
    CHAOS, 2017, 27 (10)
  • [34] Data-Driven Participation Factors for Nonlinear Systems Based on Koopman Mode Decomposition
    Netto, Marcos
    Susuki, Yoshihiko
    Mili, Lamine
    IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (01): : 198 - 203
  • [35] L∞-error Bounds for Approximations of the Koopman Operator by Kernel Extended Dynamic Mode Decomposition
    Koehne, Frederik
    Philipp, Friedrich M.
    Schaller, Manuel
    Schiela, Anton
    Worthmann, Karl
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2025, 24 (01): : 501 - 529
  • [36] On-line Coherency Analysis based on Sliding-Window Koopman Mode Decomposition
    Chamorro, Harold R.
    Guel-Cortez, Adrian-Josue
    Ordonez, Camilo A.
    Arrieta Paternina, Mario R.
    Budisic, Marko
    2021 13TH ANNUAL IEEE GREEN TECHNOLOGIES CONFERENCE GREENTECH 2021, 2021, : 484 - 488
  • [37] Model based on Prony decomposition for mode coupling of optical fibers of a cable delivery length
    Bourdine, Anton
    Durdin, Vladimir
    Volkov, Kirill
    Delmukhametov, Oleg
    Eremchuk, Evgeniya
    2020 VI INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND NANOTECHNOLOGY (IEEE ITNT-2020), 2020,
  • [38] Assessing Smoothing Effects of Wind Power around Trondheim via Koopman Mode Decomposition
    Susuki, Y.
    Raak, F.
    Svendsen, H. G.
    Bolstad, H. C.
    EERA DEEPWIND'2018, 15TH DEEP SEA OFFSHORE WIND R&D CONFERENCE, 2018, 1104
  • [39] Factorially Switching Dynamic Mode Decomposition for Koopman Analysis of Time-Variant Systems
    Takeishi, Naoya
    Yairi, Takehisa
    Kawahara, Yoshinobu
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 6402 - 6408
  • [40] A generalized Prony method for sparse approximation
    Plonka, Gerlind
    Peter, Thomas
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2014, 7