A Prony Approximation of Koopman Mode Decomposition

被引:0
|
作者
Susuki, Yoshihiko [1 ,2 ]
Mezic, Igor [3 ]
机构
[1] Kyoto Univ, Dept Elect Engn, Nishikyo Ku, Kyoto 6158510, Japan
[2] JST, CREST, 4-1-8 Honcho, Kawaguchi, Saitama 3320012, Japan
[3] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93116 USA
关键词
SPECTRAL PROPERTIES; SYSTEMS; FLOWS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Koopman Mode Decomposition (KMD) is an emerging methodology to investigate a nonlinear spatiotemporal evolution via the point spectrum of the so-called Koopman operator defined for arbitrary nonlinear dynamical systems. Prony analysis is widely used in applications and is a methodology to reconstruct a sparse sum of exponentials from finite sampled data. In this paper, we show that a vector version of the Prony analysis provides a finite approximation of the KMD. This leads to an alternative algorithm for computing the Koopman modes and eigenvalues directly from data that is especially suitable to data with small-spatial and large-temporal snapshots. The algorithm is demonstrated by applying it to data on physical power flows sampled from the 2006 system disturbance of the UCTE interconnected grid.
引用
收藏
页码:7022 / 7027
页数:6
相关论文
共 50 条
  • [1] A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition
    Matthew O. Williams
    Ioannis G. Kevrekidis
    Clarence W. Rowley
    Journal of Nonlinear Science, 2015, 25 : 1307 - 1346
  • [2] A Data-Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition
    Williams, Matthew O.
    Kevrekidis, Ioannis G.
    Rowley, Clarence W.
    JOURNAL OF NONLINEAR SCIENCE, 2015, 25 (06) : 1307 - 1346
  • [3] Gaussian Process Koopman Mode Decomposition
    Kawashima, Takahiro
    Hino, Hideitsu
    NEURAL COMPUTATION, 2022, 35 (01) : 82 - 103
  • [4] Featurizing Koopman mode decomposition for robust forecasting
    Aristoff, David
    Copperman, Jeremy
    Mankovich, Nathan
    Davies, Alexander
    JOURNAL OF CHEMICAL PHYSICS, 2024, 161 (06):
  • [5] Predictive Nonlinear Modeling by Koopman Mode Decomposition
    Kusaba, Akira
    Shin, Kilho
    Shepard, Dave
    Kuboyama, Tetsuji
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2020), 2020, : 811 - 819
  • [6] Koopman-mode decomposition of the cylinder wake
    Bagheri, Shervin
    JOURNAL OF FLUID MECHANICS, 2013, 726 : 596 - 623
  • [7] On Koopman mode decomposition and tensor component analysis
    Redman, William T.
    CHAOS, 2021, 31 (05)
  • [8] Learning Koopman Invariant Subspaces for Dynamic Mode Decomposition
    Takeishi, Naoya
    Kawahara, Yoshinobu
    Yairi, Takehisa
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [9] On Convergence of Extended Dynamic Mode Decomposition to the Koopman Operator
    Milan Korda
    Igor Mezić
    Journal of Nonlinear Science, 2018, 28 : 687 - 710
  • [10] Online Koopman Mode Decomposition for Power System Data
    Susuki, Yoshihiko
    Shimomura, Takahiro
    Ota, Yutaka
    Ishigame, Atsushi
    IFAC PAPERSONLINE, 2022, 55 (09): : 54 - 58