The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase

被引:299
|
作者
Slade, Dea [1 ,2 ]
Dunstan, Mark S. [3 ]
Barkauskaite, Eva [1 ]
Weston, Ria [1 ]
Lafite, Pierre [4 ]
Dixon, Neil [3 ]
Ahel, Marijan [5 ]
Leys, David [3 ]
Ahel, Ivan [1 ]
机构
[1] Univ Manchester, Paterson Inst Canc Res, Canc Res UK, Manchester M20 4BX, Lancs, England
[2] Univ Paris 05, Fac Med, INSERM, U1001, F-75015 Paris, France
[3] Manchester Interdisciplinary Bioctr, Manchester M1 7DN, Lancs, England
[4] Univ Orleans, ICOA, CNRS, UMR 6005, F-45067 Orleans, France
[5] Rudjer Boskovic Inst, HR-10000 Zagreb, Croatia
关键词
IDENTIFICATION; CHROMATIN; BINDING; MODEL; METABOLITES; FIELD;
D O I
10.1038/nature10404
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Post-translational modification of proteins by poly(ADP-ribosyl) ation regulates many cellular pathways that are critical for genome stability, including DNA repair, chromatin structure, mitosis and apoptosis(1). Poly(ADP-ribose) (PAR) is composed of repeating ADPribose units linked via a unique glycosidic ribose-ribose bond, and is synthesized from NAD by PAR polymerases(1,2). PAR glycohydrolase (PARG) is the only protein capable of specific hydrolysis of the ribose-ribose bonds present in PAR chains; its deficiency leads to cell death(3,4). Here we show that filamentous fungi and a number of bacteria possess a divergent form of PARG that has all the main characteristics of the human PARG enzyme. We present the first PARG crystal structure (derived from the bacterium Thermomonospora curvata), which reveals that the PARG catalytic domain is a distant member of the ubiquitous ADP-ribose-binding macrodomain family(5,6). High-resolution structures of T. curvata PARG in complexes with ADP-ribose and the PARG inhibitor ADP-HPD, complemented by biochemical studies, allow us to propose a model for PAR binding and catalysis by PARG. The insights into the PARG structure and catalytic mechanism should greatly improve our understanding of how PARG activity controls reversible protein poly(ADP-ribosyl) ation and potentially of how the defects in this regulation are linked to human disease.
引用
收藏
页码:616 / U150
页数:7
相关论文
共 50 条
  • [31] PURIFICATION AND CHARACTERIZATION OF POLY(ADP-RIBOSE) GLYCOHYDROLASE - DIFFERENT MODES OF ACTION ON LARGE AND SMALL POLY(ADP-RIBOSE)
    HATAKEYAMA, K
    NEMOTO, Y
    UEDA, K
    HAYAISHI, O
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1986, 261 (32) : 4902 - 4911
  • [32] Proteomic Investigation of Phosphorylation Sites in Poly(ADP-ribose) Polymerase-1 and Poly(ADP-ribose) Glycohydrolase
    Gagne, Jean-Philippe
    Moreel, Xavier
    Gagne, Pierre
    Labelle, Yves
    Droit, Arnaud
    Chevalier-Pare, Melissa
    Bourassa, Sylvie
    McDonald, Darin
    Hendzel, Michael J.
    Prigent, Claude
    Poirier, Guy G.
    JOURNAL OF PROTEOME RESEARCH, 2009, 8 (02) : 1014 - 1029
  • [33] Structures of the Human Poly (ADP-Ribose) Glycohydrolase Catalytic Domain Confirm Catalytic Mechanism and Explain Inhibition by ADP-HPD Derivatives
    Tucker, Julie A.
    Bennett, Neil
    Brassington, Claire
    Durant, Stephen T.
    Hassall, Giles
    Holdgate, Geoff
    McAlister, Mark
    Nissink, J. Willem M.
    Truman, Caroline
    Watson, Martin
    PLOS ONE, 2012, 7 (12):
  • [34] Spatial and functional relationship between poly(ADP-ribose) polymerase-1 and poly(ADP-ribose) glycohydrolase in the brain
    Poitras, M. F.
    Koh, D. W.
    Yu, S.-W.
    Andrabi, S. A.
    Mandir, A. S.
    Poirier, G. G.
    Dawson, V. L.
    Dawson, T. M.
    NEUROSCIENCE, 2007, 148 (01) : 198 - 211
  • [35] Poly(ADP-ribose) glycohydrolase (PARG) inhibitors increase nuclear poly(ADP-ribose) after methylating DNA damage
    Jordan, A.
    Acton, B.
    Fairweather, E.
    Hamilton, N.
    Holt, S.
    Hitchin, J.
    Hutton, C.
    James, D.
    Jones, S.
    McGonagle, A.
    Small, H.
    Smith, K.
    Stowell, A.
    Waddell, I.
    Waszkowycz, B.
    Ogilvie, D.
    EUROPEAN JOURNAL OF CANCER, 2014, 50 : 94 - 94
  • [36] STRUCTURE OF POLY(ADP-RIBOSE)
    MIWA, M
    SUGIMURA, T
    METHODS IN ENZYMOLOGY, 1984, 106 : 441 - 450
  • [37] Subcellular localization of poly(ADP-ribose) glycohydrolase in mammalian cells
    Ohashi, S
    Kanai, M
    Hanai, S
    Uchiumi, F
    Maruta, H
    Tanuma, S
    Miwa, M
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2003, 307 (04) : 915 - 921
  • [38] Poly(ADP-ribose) glycohydrolase in bovine retained and not retained placenta
    Kankofer, M
    Guz, L
    Wiercinski, J
    REPRODUCTION IN DOMESTIC ANIMALS, 2004, 39 (01) : 39 - 42
  • [39] BIOCHEMICAL-PROPERTIES AND FUNCTION OF POLY(ADP-RIBOSE) GLYCOHYDROLASE
    DESNOYERS, S
    SHAH, GM
    BROCHU, G
    HOFLACK, JC
    VERREAULT, A
    POIRIER, GG
    BIOCHIMIE, 1995, 77 (06) : 433 - 438
  • [40] POLY(ADP-RIBOSE) DEGRADATION BY GLYCOHYDROLASE STARTS WITH AN ENDONUCLEOLYTIC INCISION
    IKEJIMA, M
    GILL, DM
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1988, 263 (23) : 11037 - 11040