Multi-spectral band selection for satellite-based systems

被引:14
|
作者
Clodius, WB [1 ]
Weber, PG [1 ]
Borel, CC [1 ]
Smith, BW [1 ]
机构
[1] Univ Calif Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
multispectral; design; analysis; modeling; satellite;
D O I
10.1117/12.319369
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The design of satellite based multispectral imaging systems requires the consideration of a number of tradeoffs between cost and performance. The authors have recently been involved in the design and evaluation of a satellite based multispectral sensor operating from the visible through the long wavelength IR. The criteria that led to some of the proposed designs and the modeling used to evaluate and fine tune the designs will both be discussed. These criteria emphasized the use of bands for surface temperature retrieval and the correction of atmospheric effects. The impact of cost estimate changes on the final design will also be discussed.
引用
收藏
页码:11 / 21
页数:11
相关论文
共 50 条
  • [41] Multi-spectral Texture Segmentation Based on the Spectral Cooccurrence Matrix
    M. Hauta-Kasari
    J. Parkkinen
    T. Jaaskelainen
    R. Lenz
    Pattern Analysis & Applications, 1999, 2 : 275 - 284
  • [42] Geometry simulation of HJ-1A satellite multi-spectral image
    Zhang, Hao
    Zhang, Bing
    Chen, Zhengchao
    GEOINFORMATICS 2006: GNSS AND INTEGRATED GEOSPATIAL APPLICATIONS, 2006, 6418
  • [43] DynamicEarthNet: Daily Multi-Spectral Satellite Dataset for Semantic Change Segmentation
    Toker, Aysim
    Kondmann, Lukas
    Weber, Mark
    Eisenberger, Marvin
    Camero, Andres
    Hu, Jingliang
    Hoderlein, Ariadna Pregel
    Senaras, Caglar
    Davis, Timothy
    Cremers, Daniel
    Marchisio, Giovanni
    Zhu, Xiao Xiang
    Leal-Taixe, Laura
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 21126 - 21135
  • [44] Exploring Recurrent and Feedback CNNs for Multi-Spectral Satellite Image Classification
    Imamoglu, Nevrez
    Martinez-Gomez, Pascual
    Hamaguchi, Ryuhei
    Sakurada, Ken
    Nakamura, Ryosuke
    CYBER PHYSICAL SYSTEMS AND DEEP LEARNING, 2018, 140 : 162 - 169
  • [45] MULTI-SPECTRAL SATELLITE IMAGE CLASSIFICATION USING GLOWWORM SWARM OPTIMIZATION
    Senthilnath, J.
    Omkar, S. N.
    Mani, V.
    Tejovanth, N.
    Diwakar, P. G.
    Shenoy, Archana B.
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 47 - 50
  • [46] Multi-spectral imaging of fingerprints for secure biometric systems
    Kurita, M
    Tai, K
    Fujieda, K
    THIRTEENTH COLOR IMAGING CONFERENCE, FINAL PROGRAM AND PROCEEDINGS: COLOR SCIENCE AND ENGINEERING SYSTEMS, TECHNOLOGIES, AND APPLICATIONS, 2005, : 251 - 255
  • [47] Multi-spectral texture segmentation based on the spectral cooccurrence matrix
    Hauta-Kasari, M
    Parkkinen, J
    Jaaskelainen, T
    Lenz, R
    PATTERN ANALYSIS AND APPLICATIONS, 1999, 2 (04) : 275 - 284
  • [48] A Snapshot Multi-Spectral Demosaicing Method for Multi-Spectral Filter Array Images Based on Channel Attention Network
    Zhang, Xuejun
    Dai, Yidan
    Zhang, Geng
    Zhang, Xuemin
    Hu, Bingliang
    SENSORS, 2024, 24 (03)
  • [49] Authentication Concepts for Satellite-Based Augmentation Systems
    Dalla Chiara, Andrea
    Da Broi, Giacomo
    Pozzobon, Oscar
    Sturaro, Silvia
    Caparra, Gianluca
    Laurenti, Nicola
    Fidalgo, Javier
    Odriozola, Miguel
    Caro Ramon, Jose
    Fernandez-Hernandez, Ignacio
    Chatre, Eric
    PROCEEDINGS OF THE 29TH INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GNSS+ 2016), 2016, : 3208 - 3221
  • [50] GNSS satellite-based augmentation systems for Australia
    Suelynn Choy
    Joost Kuckartz
    Andrew G. Dempster
    Chris Rizos
    Matt Higgins
    GPS Solutions, 2017, 21 : 835 - 848