Environmental Impact Evaluation of Distributed Renewable Energy System Based on Life Cycle Assessment and Fuzzy Rough Sets

被引:22
|
作者
Li, Chengzhou [1 ]
Wang, Ningling [1 ]
Zhang, Hongyuan [2 ]
Liu, Qingxin [1 ]
Chai, Youguo [3 ]
Shen, Xiaohu [1 ]
Yang, Zhiping [1 ]
Yang, Yongping [1 ]
机构
[1] North China Elect Power Univ, Natl Res Ctr Thermal Power Engn & Technol, Beinong Rd 2, Beijing 102206, Peoples R China
[2] Beijing Jingneng Power Co Ltd, Chenjialin Rd 9, Beijing 100025, Peoples R China
[3] Beijing InBasis Technol Co Ltd, Chenjialin Rd 9, Beijing 100025, Peoples R China
关键词
life cycle assessment; distributed energy system; fuzzy rough sets; uncertainty analysis; MULTIOBJECTIVE OPTIMIZATION; CHINA; INTEGRATION; STRATEGY; GREEN; GENERATION; REDUCTION; PROVINCES; DIAGNOSIS; DESIGN;
D O I
10.3390/en12214214
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The distributed renewable energy system, integrating various renewable energy resources, is a significant energy supply technology within energy internet. It is an effective way to meet increasingly growing demand for energy conservation and environmental damage reduction in energy generation and energy utilization. In this paper, the life cycle assessment (LCA) method and fuzzy rough sets (FRS) theory are combined to build an environmental evaluation model for a distributed renewable energy system. The ReCiPe2016 method is selected to calculate the environmental effect scores of the distributed energy system, and the FRS is utilized to identify the crucial activities and exchanges during its life cycle from cradle to grave. The generalized evaluation method is applied to a real-world case study, a typical distributed energy system located in Yanqing District, Beijing, China, which is composed of wind power, small-scale hydropower, photovoltaic, centralized solar thermal power plant and a biogas power plant. The results show that the environmental effect of per kWh power derived from the distributed renewable energy system is 2.06 x 10(-3) species disappeared per year, 9.88 x 10(-3) disability-adjusted life years, and 1.75 x 10(-3) USD loss on fossil resources extraction, and further in the uncertainty analysis, it is found that the environmental load can be reduced effectively and efficiently by improving life span and annual utilization hour of power generation technologies and technology upgrade for wind turbine and photovoltaic plants. The results show that the proposed evaluation method could fast evaluate the environmental effects of a distributed energy system while the uncertainty analysis with FRS successfully and effectively identifies the key element and link among its life span.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Methodology and impact categories of environmental life cycle assessment in geothermal energy sector
    Kaczmarczyk, Michal
    11TH CONFERENCE ON INTERDISCIPLINARY PROBLEMS IN ENVIRONMENTAL PROTECTION AND ENGINEERING (EKO-DOK 2019), 2019, 100
  • [32] Life cycle assessment and environmental impact analysis for green energy production plants
    Gabbar, Hossam A.
    PROCEEDINGS OF 2007 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2007, : 2058 - 2063
  • [33] Life-cycle assessment of a hydrogen-based uninterruptible power supply system using renewable energy
    Mitja Mori
    Miha Jensterle
    Tilen Mržljak
    Boštjan Drobnič
    The International Journal of Life Cycle Assessment, 2014, 19 : 1810 - 1822
  • [34] Urban energy structure optimization at the sector scale: considering environmental impact based on life cycle assessment
    Su, Meirong
    Chen, Chen
    Yang, Zhifeng
    JOURNAL OF CLEANER PRODUCTION, 2016, 112 : 1464 - 1474
  • [35] Life-cycle assessment of a hydrogen-based uninterruptible power supply system using renewable energy
    Mori, Mitja
    Jensterle, Miha
    Mrzljak, Tilen
    Drobnic, Bostjan
    INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT, 2014, 19 (11): : 1810 - 1822
  • [36] Computer Animation System Based on Rough Sets and Fuzzy Logic
    Szczuko, Piotr
    ROUGH SETS AND CURRENT TRENDS IN COMPUTING, PROCEEDINGS, 2010, 6086 : 90 - 99
  • [38] AHP and fuzzy assessment based sustainability indicator for hybrid renewable energy system
    Liu, G.
    Rasul, M. G.
    Amanullah, M. T. O.
    Khan, M. M. K.
    2010 20TH AUSTRALASIAN UNIVERSITIES POWER ENGINEERING CONFERENCE (AUPEC 2010): POWER QUALITY FOR THE 21ST CENTURY, 2010,
  • [39] Life Cycle Assessment in Renewable Energy: Solar and Wind Perspectives
    Portillo, Francisco
    Alcayde, Alfredo
    Garcia, Rosa Maria
    Fernandez-Ros, Manuel
    Gazquez, Jose Antonio
    Novas, Nuria
    ENVIRONMENTS, 2024, 11 (07)
  • [40] Study on Method of Satellite Navigation System Combat Effectiveness Evaluation Based on Rough Fuzzy Sets
    Dong, Chengxi
    Wu, Dewei
    He, Jing
    2008 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-11, 2008, : 3220 - 3223