Automatic pixel-level crack segmentation in images using fully convolutional neural network based on residual blocks and pixel local weights

被引:43
|
作者
Ali, Raza [1 ,2 ]
Chuah, Joon Huang [1 ]
Abu Talip, Mohamad Sofian [1 ]
Mokhtar, Norrima [1 ]
Shoaib, Muhammad Ali [1 ,2 ]
机构
[1] Univ Malaya, Dept Elect Engn, Fac Engn, Kuala Lumpur, Malaysia
[2] BUITEMS, Fac Informat & Commun Technol, Quetta, Pakistan
关键词
Deep learning; Crack detection; Imbalanced dataset; Loss functions; Residual blocks; Pixel local weights; ARCHITECTURE;
D O I
10.1016/j.engappai.2021.104391
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cracks are significant indicators for the evaluation of the structural health and monitoring process. However, manual crack detection is a time-consuming and challenging task due to large areas, complex structure, and safety risks. Deep learning has emerged as a useful technique to automate the crack detection and identification process. For balanced data, existing deep learning models attempt to segment both crack pixels and non-crack pixels equally. However, due to the highly imbalanced ratio between crack pixels and non-crack pixels, the pixel-wise loss is dominantly guided by the non-crack region and has relatively little influence from the crack region. This leads to the low segmentation accuracy for crack pixels. To address the imbalance problem, this work proposes a local weighting factor with a sensitivity map to remove the network biasness and accurately predict the sensitive pixels. Furthermore, we implement a deep fully convolutional neural network for crack pixel segmentation based on residual blocks with a different number of filters in each convolutional operation that segments the crack pixels and non-crack pixels with unbiased probabilities. For performance evaluation, a new Multi Structure Crack Image (MSCI) dataset is built. By using the MSCI dataset, the proposed method achieved 98.19% crack pixel accuracy and 98.13% non-crack pixel accuracy along with 98.16% average accuracy. In addition, the training time for 10 epochs has dramatically decreased and the experimental results show that the proposed crack segmentation network (CSN) architecture along with local weighting factor and sensitivity map has better crack pixel segmentation accuracy than U-Net and SegNet architectures.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Pixel-level detection and measurement of concrete crack using faster region-based convolutional neural network and morphological feature extraction
    Li, Shengyuan
    Zhao, Xuefeng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (06)
  • [32] Automatic Pixel-Level Pavement Crack Recognition Using a Deep Feature Aggregation Segmentation Network with a scSE Attention Mechanism Module
    Qiao, Wenting
    Liu, Qiangwei
    Wu, Xiaoguang
    Ma, Biao
    Li, Gang
    SENSORS, 2021, 21 (09)
  • [33] Multi-focus image fusion algorithm based on pixel-level convolutional neural network
    Shen, Xuan-Jing
    Zhang, Xue-Feng
    Wang, Yu
    Jin, Yu-Bo
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2022, 52 (08): : 1857 - 1864
  • [34] Pixel-Level Fatigue Crack Segmentation in Large-Scale Images of Steel Structures Using an Encoder-Decoder Network
    Dong, Chuanzhi
    Li, Liangding
    Yan, Jin
    Zhang, Zhiming
    Pan, Hong
    Catbas, Fikret Necati
    SENSORS, 2021, 21 (12)
  • [35] Efficient Road Crack Detection Based on an Adaptive Pixel-Level Segmentation Algorithm
    Safaei, Nima
    Smadi, Omar
    Safaei, Babak
    Masoud, Arezoo
    TRANSPORTATION RESEARCH RECORD, 2021, 2675 (09) : 370 - 381
  • [36] Pixel-level tunnel crack segmentation using a weakly supervised annotation approach
    Wang, Hanxiang
    Li, Yanfen
    Dang, L. Minh
    Lee, Sujin
    Moon, Hyeonjoon
    COMPUTERS IN INDUSTRY, 2021, 133
  • [37] Automatic pixel-level bridge crack detection using learning context flux field with convolutional feature fusion
    Li, Gang
    Liu, Yiyang
    Shen, Dan
    Wang, Biao
    JOURNAL OF CIVIL STRUCTURAL HEALTH MONITORING, 2024, 14 (05) : 1155 - 1171
  • [38] Accurate Pixel-Wise Skin Segmentation Using Shallow Fully Convolutional Neural Network
    Minhas, Komal
    Khan, Tariq M.
    Arsalan, Muhammad
    Naqvi, Syed Saud
    Ahmed, Mansoor
    Khan, Haroon Ahmed
    Haider, Muhammad Adnan
    Haseeb, Abdul
    IEEE ACCESS, 2020, 8 (08): : 156314 - 156327
  • [39] Automatic pixel-level detection method for concrete crack with channel-spatial attention convolution neural network
    Li, Yuanyuan
    Yu, Meng
    Wu, Decheng
    Li, Rui
    Xu, Kefei
    Cheng, Longqi
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2023, 22 (02): : 1460 - 1477
  • [40] Simultaneous pixel-level concrete defect detection and grouping using a fully convolutional model
    Zhang, Chaobo
    Chang, Chih-chen
    Jamshidi, Maziar
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2021, 20 (04): : 2199 - 2215