Optimal Convergence Rates Results for Linear Inverse Problems in Hilbert Spaces

被引:20
|
作者
Albani, V. [1 ]
Elbau, P. [1 ]
de Hoop, M. V. [2 ,3 ]
Scherzer, O. [1 ,4 ]
机构
[1] Univ Vienna, Computat Sci Ctr, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Rice Univ, Dept Computat & Appl Math, Houston, TX USA
[3] Rice Univ, Dept Earth Sci, Houston, TX USA
[4] Johann Radon Inst Computat & Appl Math RICAM, Linz, Austria
基金
奥地利科学基金会;
关键词
Approximative source conditions; convergence rates; linear inverse problems; regularization; variational source conditions; TIKHONOV REGULARIZATION;
D O I
10.1080/01630563.2016.1144070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we prove optimal convergence rates results for regularization methods for solving linear ill-posed operator equations in Hilbert spaces. The results generalizes existing convergence rates results on optimality to general source conditions, such as logarithmic source conditions. Moreover, we also provide optimality results under variational source conditions and show the connection to approximative source conditions.
引用
收藏
页码:521 / 540
页数:20
相关论文
共 50 条
  • [41] BASES IN HILBERT SPACES AND THEIR APPLICATION TO CONVERGENCE PROBLEMS RELATIVE TO CLASSICAL APPROXIMATION METHODS FOR SOLVING LINEAR FUNCTIONAL EQUATIONS
    GERISCH, W
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1968, 48 (08): : T41 - &
  • [42] Thresholding gradient methods in Hilbert spaces: support identification and linear convergence
    Garrigos, Guillaume
    Rosasco, Lorenzo
    Villa, Silvia
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2020, 26
  • [43] Strong convergence theorems for split variational inequality problems in Hilbert spaces
    Sun, Wenlong
    Lu, Gang
    Jin, Yuanfeng
    Peng, Zufeng
    AIMS MATHEMATICS, 2023, 8 (11): : 27291 - 27308
  • [44] SOME RESULTS FOR EQUILIBRIUM PROBLEMS AND FIXED POINT PROBLEMS IN HILBERT SPACES
    Cho, Yeol Je
    Qin, Xiaolong
    Kang, Shin Min
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2009, 11 (02) : 294 - 316
  • [45] Convergence to common solutions of various problems for nonexpansive mappings in Hilbert spaces
    Kim, Kyung Soo
    FIXED POINT THEORY AND APPLICATIONS, 2012,
  • [46] STRONG CONVERGENCE THEOREMS FOR EQUILIBRIUM PROBLEMS WITH NONLINEAR OPERATORS IN HILBERT SPACES
    Dhompongsa, S.
    Takahashi, W.
    Yingtaweesittikul, H.
    PACIFIC JOURNAL OF OPTIMIZATION, 2012, 8 (01): : 143 - 155
  • [47] GENERALIZED SPLIT FEASIBILITY PROBLEMS AND STRONG CONVERGENCE THEOREMS IN HILBERT SPACES
    Hojo, Mayumi
    Plubtieng, Somyot
    Takahashi, Wataru
    PACIFIC JOURNAL OF OPTIMIZATION, 2016, 12 (01): : 101 - 118
  • [48] WEAK CONVERGENCE THEOREMS FOR EQUILIBRIUM PROBLEMS WITH NONLINEAR OPERATORS IN HILBERT SPACES
    Dhompongsa, S.
    Takahashi, W.
    Yingtaweesittikul, H.
    FIXED POINT THEORY, 2011, 12 (02): : 309 - 320
  • [49] Convergence to common solutions of various problems for nonexpansive mappings in Hilbert spaces
    Kyung Soo Kim
    Fixed Point Theory and Applications, 2012
  • [50] Optimal experimental designs for linear inverse problems
    Liu, J
    INVERSE PROBLEMS IN ENGINEERING, 2001, 9 (03): : 287 - 314