Fast charging LiFePO4

被引:61
|
作者
Yamada, A [1 ]
Yonemura, M [1 ]
Takei, Y [1 ]
Sonoyama, N [1 ]
Kanno, R [1 ]
机构
[1] Tokyo Inst Technol, Dept Elect Chem, Interdisciprinary Grad Sch Sci & Engn, Yokohama, Kanagawa 2268502, Japan
关键词
D O I
10.1149/1.1836117
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
An excellent fast charging ability for olivine LiFePO4 is demonstrated with respect to its advantageous open-circuit voltage of 3.4 V vs. Li/Li+ with an appropriately large overvoltage margin to the electrolyte oxidation, structural integrity under the nonequilibrium state induced by the large overpotential, and moderate electrochemical activity easily enhanced to the practical level by efficient nanocomposite formation. The current relaxation to the applied stepwise voltage of 4.2 V vs. Li/ Li+ for the LixFePO(4) was fast enough to consume most of the theoretical capacity within 10-20 min and the speed is competitive with that of the conventional electrode composite of LixMn2O4, while the capacity consumption of LixMnPO4 under the identical experimental conditions was almost null. (C) 2004 The Electrochemical Society.
引用
收藏
页码:A55 / A58
页数:4
相关论文
共 50 条
  • [21] Preparation of LiFePO4 rods, LiFePO4/graphene composite and their electrochemical performances
    Zhao, N.
    Gao, X. W.
    Chen, F.
    Liu, C.
    Cao, L.
    Zang, C. L.
    Cheng, X. N.
    Yang, J.
    MATERIALS TECHNOLOGY, 2011, 26 (05) : 232 - 235
  • [22] Shape Matters: The Effect of Particle Morphology on the Fast-Charging Performance of LiFePO4/C Nanoparticle Composite Electrodes
    Seher, Julia
    Froeba, Michael
    ACS OMEGA, 2021, 6 (37): : 24062 - 24069
  • [23] A Power Conversion Technique with Hierarchical Equalization Charging Topology for LiFePO4 Batteries
    Tseng, Kuo-Ching
    Huang, Hao-Shiang
    Cheng, Chun-An
    MICROMACHINES, 2021, 12 (09)
  • [24] LiFePO4 battery charging strategy design considering temperature rise minimization
    Chen, Zheng
    Shu, Xing
    Li, Xiaoyu
    Xiao, Renxin
    Shen, Jiangwei
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2017, 9 (06)
  • [25] Unsupported claims of ultrafast charging of LiFePO4 Li-ion batteries
    Zaghib, K.
    Goodenough, J. B.
    Mauger, A.
    Julien, C.
    JOURNAL OF POWER SOURCES, 2009, 194 (02) : 1021 - 1023
  • [26] Effects of Pulse and DC Charging on Lithium Iron Phosphate (LiFePO4) Batteries
    Beh, Hui Zhi
    Covic, Grant A.
    Boys, John T.
    2013 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2013, : 315 - 320
  • [27] SEM/EDX, XPS, AND IMPEDANCE SPECTROSCOPY OF LiFePO4 AND LiFePO4/C CERAMICS
    Orliukas, A. F.
    Fung, K. -Z.
    Venckute, V.
    Kazlauskiene, V.
    Miskinis, J.
    Dindune, A.
    Kanepe, Z.
    Ronis, J.
    Maneikis, A.
    Salkus, T.
    Kezionis, A.
    LITHUANIAN JOURNAL OF PHYSICS, 2014, 54 (02): : 106 - 113
  • [28] Effect of Fast Heating and Cooling in the Hydrothermal Synthesis on LiFePO4 Microparticles
    Ruiz-Jorge, F.
    Benitez, A.
    Fernandez-Garcia, S.
    Sanchez-Oneto, J.
    Portela, J. R.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (19) : 9318 - 9327
  • [29] Fluorinated and sulfurized solid-electrolyte interface enabling durable and fast-charging graphite/LiFePO4 pouch batteries
    Zhang, Zhenghua
    Hu, Jiugang
    Hu, Yang
    Wang, Hongmei
    Hu, Huiping
    IONICS, 2024, 30 (07) : 3951 - 3961
  • [30] Preparation and performance of LiFePO4 and LiFePO4/C cathodes by freeze-drying
    Xi, Xiaoli
    Chen, Guanglei
    Nie, Zuoren
    He, Shan
    Pi, Xiong
    Zhu, Xiaoguang
    Zhu, Jianjian
    Zuo, Tieyong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 497 (1-2) : 377 - 379