Numerical Analysis of the Eigenvalue Problem for One-Dimensional Differential Operator with Nonlocal Integral Conditions

被引:9
|
作者
Sajavicius, S. [1 ]
Sapagovas, M. [2 ]
机构
[1] Vilnius Univ, Fac Math & Informat, LT-03225 Vilnius, Lithuania
[2] Inst Math & Informat, LT-08663 Vilnius, Lithuania
来源
关键词
numerical analysis; eigenvalue problem; one-dimensional differential operator; nonlocal integral conditions; STABILITY;
D O I
10.15388/NA.2009.14.1.14535
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper the eigenvalue problem for one-dimensional differential operator with nonlocal integral conditions is investigated numerically. The special cases of general problem are analyzed and hypothesis about the dependence of the spectral structure of that problem on the coefficient of differential operator and the parameters of nonlocal conditions are formulated.
引用
收藏
页码:115 / 122
页数:8
相关论文
共 50 条
  • [11] A new eigenvalue problem for the difference operator with nonlocal conditions
    Sapagovas, Mifodijus
    Ciupaila, Regimantas
    Jakubeliene, Kristina
    Rutkauskas, Stasys
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2019, 24 (03): : 462 - 484
  • [12] Eigenvalue Problem for the Laplace Operator with Nonlocal Boundary Conditions
    Pokrovski, I. L.
    DIFFERENTIAL EQUATIONS, 2018, 54 (10) : 1363 - 1370
  • [13] One-dimensional quasilinear eigenvalue problem
    D. P. Kostomarov
    Doklady Mathematics, 2010, 82 : 634 - 637
  • [14] One-Dimensional Quasilinear Eigenvalue Problem
    Kostomarov, D. P.
    DOKLADY MATHEMATICS, 2010, 82 (01) : 634 - 637
  • [15] Computer assisted verification of the eigenvalue problem for one-dimensional Schrödinger operator
    Sekisaka, Ayuki
    Nii, Shunsaku
    Springer Proceedings in Mathematics and Statistics, 2016, 166 : 145 - 157
  • [16] A PROBLEM WITH NONLOCAL INTEGRAL CONDITION OF THE SECOND KIND FOR ONE-DIMENSIONAL HYPERBOLIC EQUATION
    Pulkina, L. S.
    Savenkova, A. E.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2016, 20 (02): : 276 - 289
  • [17] OPTIMIZATION OF THE PRINCIPAL EIGENVALUE OF THE ONE-DIMENSIONAL SCHRODINGER OPERATOR
    Emamizadeh, Behrouz
    Fernandes, Ryan I.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2008,
  • [18] One-dimensional quasilinear eigenvalue and eigenfunction problem
    D. P. Kostomarov
    Differential Equations, 2011, 47 : 787 - 798
  • [19] NEW NUMERICAL-METHODS APPLIED TO SOLVING ONE-DIMENSIONAL EIGENVALUE PROBLEM
    JOHNSON, BR
    JOURNAL OF CHEMICAL PHYSICS, 1977, 67 (09): : 4086 - 4093
  • [20] Inverse Spectral Problem of Teconstructing One-dimensional Perturbation of Integral Volterra Operator
    Buterin, S. A.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2006, 6 (01): : 3 - 11