Computation of generalized inverses by using the LDL* decomposition

被引:17
|
作者
Stanimirovic, Ivan P. [1 ]
Tasic, Milan B. [1 ]
机构
[1] Univ Nis, Fac Sci & Math, Nish 18000, Serbia
关键词
LDL* decomposition; Generalized inverse; Rational matrix; MATHEMATICA; MATRICES;
D O I
10.1016/j.aml.2011.09.051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An efficient algorithm, based on the LDL* factorization, for computing {1, 2, 3} and {1, 2, 4} inverses and the Moore-Penrose inverse of a given rational matrix A, is developed. We consider matrix products A*A and AA* and corresponding LDL* factorizations in order to compute the generalized inverse of A. By considering the matrix products (R*A)(dagger)R* and T*(AT*)(dagger), where R and T are arbitrary rational matrices with appropriate dimensions and ranks, we characterize classes A{1, 2, 3} and A{1, 2, 4}. Some evaluation times for our algorithm are compared with corresponding times for several known algorithms for computing the Moore-Penrose inverse. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:526 / 531
页数:6
相关论文
共 50 条
  • [41] GENERALIZED INVERSES AND POLAR DECOMPOSITION OF UNBOUNDED REGULAR OPERATORS ON HILBERT C*-MODULES
    Frank, Michael
    Sharifi, Kamran
    JOURNAL OF OPERATOR THEORY, 2010, 64 (02) : 377 - 386
  • [42] Core-Nilpotent decomposition and new generalized inverses of finite potent endomorphisms
    Pablos Romo, Fernando
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (11): : 2254 - 2275
  • [43] On the geometry of generalized inverses
    Andruchow, E
    Corach, G
    Mbekhta, M
    MATHEMATISCHE NACHRICHTEN, 2005, 278 (7-8) : 756 - 770
  • [44] Projections for generalized inverses
    Xu, Sanzhang
    Chen, Jianlong
    Benitez, Julio
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (08): : 1593 - 1605
  • [45] GENERALIZED INVERSES - PREFACE
    BAPAT, R
    MITRA, SK
    HARTWIG, R
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1994, 211 : 1 - 4
  • [46] A note on generalized inverses
    Embrechts, Paul
    Hofert, Marius
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2013, 77 (03) : 423 - 432
  • [47] BLOCK GENERALIZED INVERSES
    HARTWIG, RE
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1976, 61 (03) : 197 - 251
  • [48] Nonnegative generalized inverses
    Sivakumar, KC
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1997, 28 (07): : 939 - 942
  • [49] A note on generalized inverses
    Paul Embrechts
    Marius Hofert
    Mathematical Methods of Operations Research, 2013, 77 : 423 - 432
  • [50] Smoothness of generalized inverses
    Leiterer, Juergen
    Rodman, Leiba
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2012, 23 (03): : 487 - 521