Evolving Boolean Functions with Conjunctions and Disjunctions via Genetic Programming

被引:5
|
作者
Doerr, Benjamin [1 ]
Lissovoi, Andrei [2 ]
Oliveto, Pietro S. [2 ]
机构
[1] Ecole Polytech, CNRS, Lab Informat LIX, Palaiseau, France
[2] Univ Sheffield, Dept Comp Sci, Sheffield, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
Theory; Genetic programming; Running time analysis;
D O I
10.1145/3321707.3321851
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently it has been proved that simple GP systems can efficiently evolve the conjunction of n variables if they are equipped with the minimal required components. In this paper, we make a considerable step forward by analysing the behaviour and performance of a GP system for evolving a Boolean function with unknown components, i.e. the target function may consist of both conjunctions and disjunctions. We rigorously prove that if the target function is the conjunction of n variables, then a GP system using the complete truth table to evaluate program quality evolves the exact target function in O(ln log(2) n) iterations in expectation, where l >= n is a limit on the size of any accepted tree. Additionally, we show that when a polynomial sample of possible inputs is used to evaluate solution quality, conjunctions with any polynomially small generalisation error can be evolved with probability 1 - O(log(2) (n)/n). To produce our results we introduce a super-multiplicative drift theorem that gives significantly stronger runtime bounds when the expected progress is only slightly super-linear in the distance from the optimum.
引用
收藏
页码:1003 / 1011
页数:9
相关论文
共 50 条
  • [21] Gate-level synthesis of Boolean functions using binary multiplexers and genetic programming
    Hernández-Aguirre, A
    Buckles, BP
    Coello-Coello, CA
    PROCEEDINGS OF THE 2000 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2000, : 675 - 682
  • [22] A New Angle: On Evolving Rotation Symmetric Boolean Functions
    Carlet, Claude
    Durasevic, Marko
    Gasperov, Bruno
    Jakobovic, Domagoj
    Mariot, Luca
    Picek, Stjepan
    APPLICATIONS OF EVOLUTIONARY COMPUTATION, EVOAPPLICATIONS 2024, PT I, 2024, 14634 : 287 - 302
  • [23] Evolving Boolean Functions for Fast and Efficient Randomness Testing
    Mrazek, Vojtech
    Sys, Marek
    Vasicek, Zdenek
    Sekanina, Lukas
    Matyas, Vashek
    GECCO'18: PROCEEDINGS OF THE 2018 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2018, : 1302 - 1309
  • [24] Evolving Algebraic Constructions for Designing Bent Boolean Functions
    Picek, Stjepan
    Jakobovic, Domagoj
    GECCO'16: PROCEEDINGS OF THE 2016 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2016, : 781 - 788
  • [25] Evolving Cryptographic Boolean Functions with Minimal Multiplicative Complexity
    Husa, Jakub
    Sekanina, Lukas
    2020 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2020,
  • [26] Evolving Constructions for Balanced, Highly Nonlinear Boolean Functions
    Carlet, Claude
    Djurasevic, Marko
    Jakobovic, Domagoj
    Mariot, Luca
    Picek, Stjepan
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'22), 2022, : 1147 - 1155
  • [27] Learning similarity functions for binary strings via genetic programming
    Pebriadi, Muhammad Syahid
    Dewanto, Vektor
    Kusuma, Wisnu Ananta
    Afendi, Farit Mochamad
    Heryanto, Rudi
    2016 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER SCIENCE AND INFORMATION SYSTEMS (ICACSIS), 2016, : 476 - 490
  • [28] Evolving Interpretable Classification Models via Readability-Enhanced Genetic Programming
    de Souza Abreu, Joao Victor T.
    Martins, Denis Mayr Lima
    de Lima Neto, Fernando Buarque
    2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 1691 - 1697
  • [29] Boolean genetic programming for promoter recognition in eukaryotes
    Wang, SXJ
    Lichodzijewski, P
    2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 683 - 690
  • [30] Evolving choice structures for genetic programming
    Wang, Shuaiqiang
    Ma, Jun
    Liu, Jiming
    Niu, Xiaofei
    INFORMATION PROCESSING LETTERS, 2010, 110 (20) : 871 - 876