Neutral gas analysis for JET DT operation

被引:20
|
作者
Kruezi, U. [1 ,6 ]
Jepu, I. [2 ]
Sergienko, G. [3 ]
Klepper, C. C. [4 ]
Delabie, E. [4 ]
Vartanian, S. [5 ]
Widdowson, A. [1 ]
机构
[1] Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England
[2] Natl Inst Laser Plasma & Radiat Phys, Magurele 077125, Romania
[3] Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, Julich, Germany
[4] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[5] CEA IRFM, F-13108 St Paul Les Durance, France
[6] ITER Org, Route Vinon Sur Verdon, F-13067 St Paul Les Durance, France
来源
JOURNAL OF INSTRUMENTATION | 2020年 / 15卷 / 01期
关键词
Plasma diagnostics - interferometry; spectroscopy and imaging; Radiation-hard electronics; TRITIUM CONCENTRATION MEASUREMENTS; FUEL RETENTION; DIVERTOR;
D O I
10.1088/1748-0221/15/01/C01032
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Neutral gas analysis, the measurement and evaluation of total and partial pressures, is a key technique to study the impact of neutral gas dynamics on retention, recycling and release processes of fuel or impurity species in fusion devices. At JET, the experiment closest to ITER in terms of operating parameters and size, various detectors and techniques for partial pressure and total pressure measurements are deployed together to characterise neutral gas dynamics during and after plasma operation on various toroidal and poloidal locations. An extensive modification of JET's sub-divertor neutral gas diagnostic system aims at retaining and extending established measurement capabilities in the forthcoming Deuterium-Tritium (DT) experiments (DTE2). To achieve DT compatibility, a separation of radiation-sensitive electronics from the sensor and adequate radiation shielding is required, as well as utilisation of a DT compatible differential pumping system with adjustable throughput to account for the strong pressure variation in the sub-divertor region. Finally, the sub-divertor neutral gas diagnostic will be equipped with multiple Residual Gas Analysers (RGAs), utilising quadrupole mass spectrometry and electrostatic ion-trap-principles, all operating with remote electronics located behind the biological radiation shield. These RGAs will record data in a fast selected discrete mass mode during plasma pulses (cycle similar to 2 s) and will automatically switch back to continuous data recording (cycle similar to 100 s) afterwards. They will be complemented by a newly improved Penning gauge spectroscopy configuration in particular supporting the He and D-2 separation relevant for DT operation. The distance between these devices and their associated control unit is typically 15m. A newly developed RGA with a cable length of 80 m, compatible with the ITER environment, will also be employed for the first time. This set-up and its operation in DTE2 will provide vital input to the development of the ITER divertor RGA in the most relevant environment currently available.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Challenges in the extrapolation from DD to DT plasmas: experimental analysis and theory based predictions for JET-DT
    Garcia, J.
    Challis, C.
    Gallart, D.
    Garzotti, L.
    Goerler, T.
    King, D.
    Mantsinen, M.
    Abhangi, M.
    Abreu, P.
    Aftanas, M.
    Afzal, M.
    Aggarwal, K. M.
    Aho-Mantila, L.
    Ahonen, E.
    Aints, M.
    Airila, M.
    Albanese, R.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allan, P.
    Almaviva, S.
    Alonso, A.
    Alper, B.
    Alsworth, I.
    Alves, D.
    Ambrosino, G.
    Ambrosino, R.
    Amosov, V.
    Andersson, F.
    Andersson Sunden, E.
    Angelone, M.
    Anghel, A.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Apruzzese, G.
    Arena, P.
    Ariola, M.
    Arnichand, H.
    Arnoux, G.
    Arshad, S.
    Ash, A.
    Asp, E.
    Asunta, O.
    Atanasiu, C. V.
    Austin, Y.
    Avotina, L.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2017, 59 (01)
  • [22] Implementation and exploitation of JET enhancements at different fuel mixtures in preparation for DT operation and next step devices
    Murari, A.
    Bekris, N.
    Figueiredo, J.
    Kim, H-T
    Von Thun, C. Perez
    Balboa, I
    Batistoni, P.
    Giegerich, T.
    Huddleston, T.
    Rubel, M.
    Vila, R.
    Villari, R.
    Widdowson, A.
    FUSION ENGINEERING AND DESIGN, 2019, 146 : 741 - 744
  • [23] Application of the gas-path-analysis (GPA) for the non-stationary operation of a jet-engiine
    Lunderstadt, R
    Junk, R
    COMADEM '97: 10TH INTERNATIONAL CONGRESS AND EXHIBITION ON CONDITION MONITORING AND DIAGNOSTIC ENGINEERING MANAGEMENT, VOL 1, 1997, 171 : 123 - 132
  • [24] INFLUENCE OF PROPERTIES AND PARAMETERS OF INJECTED GAS ON OPERATION OF A STEAM JET EJECTOR
    SHKLOVER, GG
    MILMAN, OO
    GERASIMOV, AV
    KAPTILNI, AG
    THERMAL ENGINEERING, 1975, 22 (12) : 64 - 67
  • [25] Long term operation of the JET Facilities' Active Gas Handling System
    Brennan, PD
    FUSION SCIENCE AND TECHNOLOGY, 2002, 41 (03) : 578 - 582
  • [26] CHOICE OF OPTIMAL OPERATION RATE OF CONTINUOUS GAS JET TREATMENT OF MELT
    BUDYKA, SK
    SVIDUNOVICH, NA
    KOZLOV, DA
    GAROST, AI
    SIDOROV, AN
    DULEVICH, AF
    DOKLADY AKADEMII NAUK BELARUSI, 1975, 19 (12): : 1089 - 1091
  • [27] HIGH-DENSITY NEUTRAL GAS-JET TARGET AS A WINDOWLESS STRIPPER
    BETHGE, K
    FEIST, H
    SCHOPPER, E
    TIETSCH, W
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1976, 23 (02) : 1140 - 1142
  • [28] Spectroscopic measurement of gas temperature in the neutralizer of the JET neutral beam injection system
    Surrey, E
    Crowley, B
    PLASMA PHYSICS AND CONTROLLED FUSION, 2003, 45 (07) : 1209 - 1226
  • [29] Modeling of nonstationary vacuum arc plasma jet interaction with a neutral background gas
    Gidalevich, E
    Goldsmith, S
    Boxman, RL
    JOURNAL OF APPLIED PHYSICS, 2001, 90 (09) : 4355 - 4360
  • [30] Development of the neutral gas diagnostic system for neutral pressure measurements and gas analysis on the SPARC tokamak
    Fox-Widdows, E.
    Brettingen, J.
    Chrobak, C. P.
    Hanson, M. O.
    Ilagan, J.
    Isaak, G.
    Lafleur, C.
    Li, R.
    Kuang, A. Q.
    Kulchy, R.
    McKanas, S.
    Myers, C. E.
    Pentecost, J.
    Quinn, M.
    Reinke, M. L.
    Witham, J.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2024, 95 (10):